
Using FS-A8S

1

1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.5

1.5.1

1.5.2

1.5.2.1

1.5.3

1.5.4

1.5.5

1.6

1.6.1

1.6.2

1.7

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

1.7.7

1.7.8

1.8

1.8.1

1.8.2

1.8.2.1

1.8.2.2

1.8.3

1.8.4

Table of Contents
Introduction

Glossary

Safety tips

Assembly

Clover 4.2 assembly

Clover 4.2 WorldSkills

Clover 4 assembly

Clover 3 assembly

Clover 2 assembly

Configuration

Sensor calibration

RC setup

Using FS-A8S

Flight modes

Power setup

Failsafe configuration

Manual flight

Basics

Exercises

Working with Raspberry Pi

RPi Image

Wi-Fi connection

Connection to the Pixracer

Using QGroundControl over Wi-Fi

Remote shell

Command line interface

Automated self-checks

Viewing images from cameras

Programming

Camera setup

Fiducial markers (ArUco)

Marker detection

Map-based navigation

Optical Flow

Autonomous flight (OFFBOARD)

Using FS-A8S

2

1.8.5

1.8.6

1.8.7

1.8.8

1.8.9

1.8.10

1.8.11

1.8.12

1.8.13

1.8.14

1.8.15

1.8.16

1.8.16.1

1.8.16.2

1.8.16.3

1.8.16.4

1.8.17

1.8.18

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.9.6

1.9.7

1.9.8

1.9.9

1.9.10

1.9.11

1.9.12

1.9.13

1.9.14

1.9.15

1.9.16

1.9.17

1.9.18

1.9.19

Coordinate systems (frames)

Code examples

Interfacing with a laser rangefinder

LED strip

Working with GPIO

Interfacing with a sonar

Computer vision basics

Using rviz and rqt

Software autorun

Using JavaScript

Blocks programming

Simulation

Native setup

VM setup

Usage

Setup on M1 computers

ROS

MAVROS

Supplementary materials

COEX Pix

COEX PDB

COEX GPS

Using SSH keys

Guide on autonomous flight

Hostname

PX4 Simulation

Navigation using vertical ArUco-markers

PID Setup

Model files for parts

ROS Melodic installation

Camera calibration

VPN ZeroTier Connection

Quadcopter control with 4G communication

Clover and Jetson Nano

Remote control app

Wi-Fi Configuration

UART settings

PX4 Parameters

Using FS-A8S

3

1.9.20

1.9.21

1.9.22

1.9.23

1.9.24

1.9.25

1.9.26

1.9.27

1.9.28

1.9.29

1.9.30

1.9.31

1.9.32

1.9.33

1.9.34

1.9.35

1.9.36

1.9.37

1.9.38

1.9.39

1.9.40

1.9.41

1.9.42

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.5

1.10.6

1.10.7

1.10.8

1.11

1.11.1

1.11.2

1.11.3

1.11.4

1.11.5

PX4 Logs and Topics

PX4 Firmware

MAVLink

Multimeter usage

RC Troubleshooting

Flashing ESCs

Interfacing with Arduino

Connecting GPS

Working with IR sensors

FPV Setup

FPV Setup (Clover 3)

Magnetic grip

Mechanical grip

Trainer mode

Tinning

Types of power connectors

Connecting 4 in 1 ESCs

Soldering safety

LED strip (legacy)

Contribution Guidelines

COEX packages repository

Migration to v0.20

Migration to v0.22

Events

CopterHack-2023

CopterHack-2022

CopterHack-2021

CopterHack-2019

CopterHack-2018

CopterHack-2017

Video contest

Educational contests

Clover-based projects

Clover Cloud Platform

Autonomous Racing Drone

Motion Capture System

Swarm in Blocks 2

Advanced Clover 2

Using FS-A8S

4

1.11.6

1.11.7

1.11.8

1.11.9

1.11.10

1.11.11

1.11.12

1.11.13

1.11.14

1.11.15

1.11.16

1.11.17

1.11.18

1.11.19

1.11.20

1.11.21

1.11.22

1.11.23

1.11.24

1.11.25

1.11.26

1.11.27

1.11.28

1.11.29

Network of charging stations

Swarm-in-blocks

Obstacle avoidance using artificial potential fields method

The Clover Rescue Project

CopterCat CM4

Autonomous valet parking drone assistance

Autonomous Multirotor Landing System (AMLS)

Drone show

Innopolis Open 2020 (L22_ÆRO)

Copter spheric guard

Face recognition system

Android RC app

3D-scanning drone

Human pose estimation drone control

Robocross-2019

Camera calibration (legacy)

Recognition of crop types in agriculture

Drones to fight Coronavirus

D-drone Copter Hack 2021 by AT Makers

3D-printed Generative Design Frame

Retail Drone

The Indoor Mapping Drone

Seeding Drone

Blue Jay Eindhoven

Using FS-A8S

5

COEX Clover

Clover is an educational kit of a programmable quadcopter that consists of
popular open source components, and a set of necessary documentation and
libraries for working with it.

The kit includes a COEX Pix flight controller with the PX4 flight stack, a Raspberry
Pi 4 as a controlling onboard computer, and a camera module for performing
flights with the use of computer vision, as well as a set of various sensors and
other peripherals.

The Clover platform contains a pre-configured image for Raspberry Pi with the full
set of required software for working with peripheral devices and programming
autonomous flights. The source code of the platform and of the documentation is
open and available on GitHub.

If you have studied the documentation but have not found an answer to your
question, join our support chat and our specialists will be happy to answer you:
@COEXHelpdesk.

We also have a chat for programmers coding for PX4, autonomous navigation
indoors, and drone swarms: @DroneCode.

You can download PDF-version of this documentation.

https://github.com/CopterExpress/clover
tg://resolve?domain=COEXHelpdesk
tg://resolve?domain=DroneCode
https://clover.coex.tech/clover_en.pdf

Using FS-A8S

6

Glossary

Drone
An unmanned aircraft. Typical examples are: quadrotors, hexacopters, model
airplanes, fixed wings, VTOLs, model helicopters.

Quadcopter
An unmanned aerial vehicle with 4 propellers and an electronic stabilization
system.

Multicopter
An unmanned aerial vehicle with an electronic stabilization system and the
number of propellers equal to 3 (tricopter), 4 (quadcopter), 6 (hexacopter), 8
(octocopter), or more.

Flight controller / autopilot
1. A specialized circuit-board designed for controlling a multicopter, a plane or
another vehicle. Examples: Pixhawk, ArduPilot, Naze32, CC3D.

2. Software for the multicopter control circuit-board. Examples: PX4, APM,
CleanFlight, BetaFlight.

Firmware
Software primarily for embedded systems, for example, a flight controller or an
ESC.

Motor
An electric motor that rotates propellers of the multicopter. Brushless motors are
commonly used. These motors require an ESC.

ESC / motor controller
An Electronic Speed Controller. A specialized circuit-board that controls the speed
of the brushless motor. It is controlled by a flight controller using pulse width
modulation (PWM).

ESC has the firmware that determines the characteristics of its operation.

Using FS-A8S

7

Battery
A rechargeable power source for the drone. Quadrotors typically use LiPo
(lithium-ion polymer) batteries.

Battery cell
Single element of the battery pack. Typical drone batteries contain several (2 to 6)
cells connected in series. Maximum LiPo cell voltage is 4.2 v; battery voltage is a
sum of each cell's voltage (if they are connected in series). The number of cells
connected in series is marked by the letter S, as in 2S (two cells in series), 3S,
4S.

Clover kits typically use 3S batteries.

Remote control / radio control equipment
A radio-operated quadcopter remote control. Operation of the remote control
requires connecting a receiver to the flight controller.

Clover may also be controlled from a smartphone.

Telemetry
1. Transmitting the data about the state of a quadcopter or another aircraft over a
distance.

2. The data about the aircraft state (height, orientation, global coordinates, etc.).

3. A system for transmitting the data about the aircraft state or commands to it
over the air. Examples: radio modems (RFD900, 3DR Radio Modem), Wi-Fi
modules (ESP-07). Raspberry Pi may also be used in Clover as a telemetry
module: the use of QGroundControl via Wi-Fi.

Arming
Armed is the state of copter readiness for the flight. When the gas stick is lifted, or
when an external command with the target point is sent, the copter will fly.
Usually, a copter starts rotating its propellers when it is switched to the "armed"
state, even if the gas stick is down.

The opposite state is Disarmed.

PX4

Using FS-A8S

8

A popular open source flight controller software that works with the Pixhawk
series of flight controllers, Pixracer, and others. PX4 is recommended to be used
with Clover.

Raspberry Pi
A popular single-board computer that is used in the Clover kit.

SD card image
A complete digital copy of SD card contents stored in a single file. This file may be
written to an SD card using special software like Etcher. A Raspberry Pi's SD card
is the only long-term memory of the single-board computer.

The Clover kit includes a recommended SD card image

APM / ArduPilot
An open source flight controller originally created for the Arduino boards. It was
later ported to Pixhawk, Pixracer and other boards.

MAVLink
A communication protocol for drones, ground stations and other devices over
radio channels. This protocol is widely used for telemetry.

ROS
A popular framework for writing complex robotics applications.

MAVROS
A library that is a link between the aircraft operating using the MAVLink protocol,
and ROS.

UART
A serial asynchronous data transfer interface used in many devices. For example,
GPS antennas, Wi-Fi routers, or Pixhawk.

IMU

Using FS-A8S

9

Inertial measurement unit. A set of inertial sensors (a gyroscope and an
accelerometer; a magnetometer is typically added as well) that allow the drone to
compute its orientation (and, to a lesser extent, position) in space.

Estimation
A process of current state (position, rotation, velocity, angular rates, etc.)
estimation performed by the flight controller software. A Kalman Filter is typically
used for sensor fusion; other filters are typically applied to raw sensor data.

PX4 has two estimation modules: LPE and ECL EKF (EKF2).

APM utilizes its EKF2 subsystem.

https://en.wikipedia.org/wiki/Kalman_filter
https://dev.px4.io/en/tutorials/tuning_the_ecl_ekf.html
http://ardupilot.org/dev/docs/ekf2-estimation-system.html

Using FS-A8S

10

Safety tips

Soldering
Soldering and tinning should be performed
in specially prepared rooms. A ventilation
system and a fume extractor are mandatory.

Before you start:

1. Prepare your workplace. Nothing
should interrupt the process. Your
workbench should be well lit.

2. Check the integrity of wiring and plugs
of all electrical appliances.

3. Place your soldering iron near the fume extractor. Use a soldering iron stand
when the soldering iron is not in use.

4. Wear safety goggles and gloves.

During soldering:

1. Use the soldering iron grip to hold the soldering iron. The tip is very hot!

2. The soldering iron tip can easily damage insulation which may lead to short
circuits.

3. Use pliers, tweezers and other tools to safely handle wires and boards during
soldering.

4. Do not pull wires too hard during desoldering operations to avoid burns by
molten solder.

5. Use a special holder (a "helping hand") for soldering small components.

Using FS-A8S

11

6. Don't hold the soldering iron by its wire or tip. Unplug the iron during breaks
and after work.

Unplug the soldering iron in case of malfunctions and/or fire.

Rosin and solder emit a considerable amount of harmful substances when
heated. Vent the room after each soldering session. Take breaks every 30
minutes for full room ventilation; don't forget to unplug the soldering iron during
these breaks.

Flights

Safety during pre-flight preparations

Make sure that the Li-ion batteries are charged.
Make sure the batteries in the control equipment are charged.
Attach the propellers just before flying.

Check the following:

Tightness of propeller nuts.
Attachment and integrity of propellers guards.
Reliability of wires attachment, absence of loose wires.

Safety before flight

Place the spectators behind the pilot, or behind the line passing through both
shoulders of the pilot behind the pilot.
Do not allow spectators into the hemisphere in front of the pilot.
Know and remember the flight duration that the copter and its battery are
designed for.

Using FS-A8S

12

BEFORE connecting the Li-ion battery enable control equipment (the
remote), and set the left stick (throttle) to the zero position.
Connect the Li-ion battery immediately before takeoff, disconnect it
immediately after landing.
Stay at least 3 m away from the copter.
Take off from a level flat site at the distance of at least 3 meters away from
obstacles.

Flight safety

Follow all instructions of the teacher or the flight instructor.
Specify the flying area in advance. Only fly in the specified area, and avoid
flying outside it. Not to fly over behind your back.
When learning to fly, fly below the level of your height.
Fly in proximity to yourself at a distance at which you can see the copter
orientation in space. Do no fly far away from yourself. If you doubt copter
orientation, immediately land on the spot. Do not try to take off. Approach the
copter and take off.
During the flight, move the control sticks carefully and smoothly. Avoid abrupt
movements. If you have to change the flight direction, move the sticks
vigorously, but not abruptly.
Fly carefully, and perform only those flight elements that you are sure you
can perform. Never perform the flight maneuvers that you doubt you can
perform, and the maneuvers involving risks.
Observe the speed limit. The copter speed should be maintained within the
speed of a walking man.
Return the copter to the landing location by the estimated time, prevent
complete discharge of the battery during the flight.
Land only on a flat open area away from obstacles

Emergency landing

In case of hitting the ground or a heavy landing, do the following:

1. Stop the flight. Land the copter on the ground. Set the left stick (throttle) to
the minimum

2. Disarm (Move the left stick left-down for 3 seconds)
3. Disconnect the Li-ion battery on the copter.
4. Turn off the remote.
5. Inspect the copter, and repair if necessary.

Scheduled landing

After a scheduled landing, do the following:

1. Disarm (Move the left stick left-down for 3 seconds)
2. Disconnect the Li-ion battery on the copter.
3. Turn off the remote.

Using FS-A8S

13

Clover drone assembly
This section contains articles describing the assembly of each version of Clover.

Version Image

Clover 4.2
(4.2 WorldSkills)

Clover 4

Clover 3

Clover 2

Links to Clover's parts CAD-models are available in the "CAD-models" article.

Determination of version
Use serial number to determine the version of your Clover.

In this case the number 420 indicates the Clover version 4.2.

Using FS-A8S

14

Using FS-A8S

15

Clover 4.2 assembly
Dimensional drawing – clover-4.2.pdf.

Fasteners size
During assembly, screws and racks of various sizes are used, using
fasteners of the wrong size can damage the copter.

Screw M3x10 Aluminium rack 40
mm

Screw M3x8 Aluminium rack 15
mm

Screw M3x5 Nylon rack 40 mm

Screw M2x5 Nylon rack 30 mm

Nut M3 (self-
locking) Nylon rack 20 mm

Nut M3 (nylon) Nylon rack 15 mm

Damper rack Nylon rack 6 mm

Frame Assembly
1. Align the 4 beams with the center deck, fix them with the M3x8 screws and

nuts with a nylon insert.

https://github.com/CopterExpress/clover/raw/master/docs/assets/dimensional-drawing/clover-4.2.pdf

Using FS-A8S

16

2. Install 2 aluminum 15mm posts on the center holes in the main deck and fix
them with the M3x8 screws.

3. Install the stiffener hook into the groove in the beam.

4. Press the stiffeners onto the main deck.

Using FS-A8S

17

5. Tighten the stiffeners with a small carbon deck.

6. Install 4 6mm nylon posts and fix them with the M3x5 screws.

Installing motors
1. When installing motors, pay attention to the rotation scheme of the motors.

The rotation marking on the motors must match the rotation pattern.

Using FS-A8S

18

2. Mount the motor on the corresponding holes in the beam using M3x5
screws.

Make sure that the motors are secured with M3x5 screws, otherwise a
short circuit between the windings may occur.

Installing ESC and PDB
1. Connect the speed controllers (ESC) to the motors using the MR30

connectors and fasten them to the beams using clamps.

Using FS-A8S

19

2. Install the power distribution board (PDB) on the pre-mounted racks and
secure it with 6mm racks. The power distribution board must be installed so
that the power connection cable points toward the tail of the aircraft.

3. Connect the power outputs of the speed controllers to the power distribution
board.

Installing Flight Controller
Clover 4 drone kit allows you to install various flight controllers, for example
COEX Pix and Pixracer.

Using FS-A8S

20

During installation the flight controller, pay attention to the arrow located on
the board, it should be directed to the copter bow.

COEX Pix

Before installing the damper struts, screw 2 layers of nylon nuts, for a
stronger fix or bite off the excess thread using side cutters.

Install the damper struts, fix COEX Pix on them with nylon nuts.

Pixracer

1. Place the small deck on the racks and secure it with nylon nuts.

2. Glue 3-4 layers of double-sided tape, glue it in the center of the small deck
and install Pixracer on top.

Connect Flight Controller

Using FS-A8S

21

1. Connect the speed controllers to the flight controller in accordance with the
diagram.

2. Connect the power cable to the power distribution board(PDB) and the
corresponding connector on the flight controller.

3. Install 40mm aluminum racks on the M3x10 screws.

Installing Raspberry Pi
1. Install the 20 mm racks on the main deck, fix them with the M3x8 screws.

Using FS-A8S

22

2. On a mounting deck, install M2.5x6 mm racks and M3x30 mm racks, fasten
them with the M2.5x4 and M3x10 bolts, respectively.

3. Install the assembled mounting deck on the main deck and fix with the M3x8
screws.

4. Install the Raspberry Pi circuit board and fix with M2.5x4 bolts.

Using FS-A8S

23

5. On the capture deck, install the rangefinder using self-locking nuts and M3x8
screws, and glue the radio using double-sided tape.

6. Install 4 20 mm racks and fix them with the M3x8 screws.

7. Install the camera on the small mounting deck and fix it with 2 M2x5 self-
tapping screws in the upper left and lower right corners.

8. Install the camera module on the capture deck and fix with the M3x8 screws.

Using FS-A8S

24

9. Install the assembled pickup deck and fix with the M3x8 screws.

10. Connect to the Raspberry Pi rangefinder and power cable.

11. Connect the camera cable to Raspberry Pi.

Installing LED strip and legs
1. Assemble the hoop for the LED strip by combining the lock on the ends.

Using FS-A8S

25

2. Stick the LED strip on the hoop, for better fastening, pull it with 3-4 clamps.

3. Install the legs on the stiffening plate using self-locking nuts and M3x8
screws using only the extreme mounting holes. From below, between the
plates of the legs, install a damper silicone ring.

4. Bend the legs back and install a hoop with LED strip in a special groove on
them so that the connection cables exit from the tail side of the copter.

5. Behind fasten the legs with self-locking nuts and M3x10 screws.

Using FS-A8S

26

6. Connect the LED strip power (red, black cables) to the short JST connector
on the PDB.

7. Connect the signal output of the LED strip (white cable) to Raspberry Ri, to
pin GPIO21.

Installing guard
1. Assemble the lower level of guard with 40mm racks and M3x10 screws.

2. Assemble the top level of protection with the M3x10 screws.

Using FS-A8S

27

3. Install the mounting deck and fix it with M3x8 bolts.

4. Establish protection and fix on beams by means of self-locking nuts and
M3x10 screws.

Flight preparation
1. Install the battery strap and connect the flight controller to the Raspberry Pi

using a USB cable.

Using FS-A8S

28

2. Install the propellers in accordance with the directional diagram of the motors.

3. Install the battery.

The drone is assembled, then perform setup.

Using FS-A8S

29

Clover 4 assembly
Dimensional drawing – clover-4.2-ws.pdf.

Fasteners size
During assembly, screws and racks of various sizes are used, using
fasteners of the wrong size can damage the copter.

Screw M3x10 Aluminium rack
40mm

Screw M3x8 Aluminium rack
15mm

Screw M3x5 Nylon rack 40mm

Screw M2x5 Nylon rack 30mm

Nut M3 (self-
locking) Nylon rack 20mm

Nut M3 (nylon) Nylon rack 15mm

Damper rack Nylon rack 6mm

Frame Assembly
1. Align the 4 beams with the center deck, fix them with the M3x8 screws and

self-locking nuts.

https://github.com/CopterExpress/clover/raw/master/docs/assets/dimensional-drawing/clover-4.2-ws.pdf

Using FS-A8S

30

2. Install 2 15mm posts on the center holes in the main deck and fix them with
the M3x8 screws.

3. Install the stiffener hook into the groove in the beam.

4. Hold the stiffeners tight to the main deck.

Using FS-A8S

31

5. Tighten the stiffeners with a small carbon deck.

6. Install 4 6mm nylon posts and fix them with the M3x5 screws.

Installing of motors
1. When installing motors, pay attention to the rotation scheme of the motors.

The rotation mark on the motors must match the rotation scheme.

Using FS-A8S

32

2. Mount the motor on the corresponding holes in the beam using M3x5
screws.

Make sure that the motors are secured with M3x5 screws, otherwise a
short circuit between the windings may occur.

Installing ESC and PDB
1. Install the Power Distribution Board (PDB) on the pre-mounted stands, it

must be installed with the power cable pointing towards the rear of the
aircraft.

Using FS-A8S

33

2. Install the speed controllers (ESC) to the appropriate positions on the beam.

3. Tighten the speed controllers (ESC) with cable ties.

Using FS-A8S

34

4. Measure out the required amount of ESC power wire, and cut off the excess.

5. Strip and tin the cut wires

6. Tin the contact pads on the power distribution board.

7. Solder the ESC power wires to the power distribution board.

Be careful with the pin signatures on the board. The red wire should go
to the site with the signature +, and the black one to the signature -.

8. Cut off the excess phase cable coming from the motors.

9. Strip and tin the phase cables.

10. Tin the contact pads of the governors.

11. Solder the phase cables to the contact pads of the regulators in any order.

Using FS-A8S

35

12. Solder 3 female JST connectors to 5V pads and bat+ pad

Installing the flight controller
The Clover 4 set allows you to install various flight controllers, for example COEX
Pix and Pixracer.

When installing the flight controller, pay attention to the arrow located on
the board, when installing it must be directed towards the nose of the
aircraft.

Using FS-A8S

36

COEX Pix

Before installing the damper struts, screw in 2 layers of nylon nuts for a
stronger hold or bite off excess threads with side cutters.

1. Secure the power distribution board with nylon nuts and mount the damper
posts on top.

2. Install the flight controller and secure with nylon nuts.

3. Insert the flash card for logging into the flight controller.

Pixracer

1. Secure the power distribution board with 6mm nylon struts.

2. Install the small mounting deck and secure with nylon nuts.

3. Glue 3-4 layers of double-sided tape, glue it in the center of the small deck
and place the Pixracer on top.

Using FS-A8S

37

4. Insert the MicroSD card into the flight controller.

Connecting a flight controller
1. Connect the ESCs to the flight controller according to the scheme.

2. Connect the power cable to the power distribution board (PDB) and the
corresponding connector on the flight controller.

Using FS-A8S

38

3. Install the 40mm aluminum posts onto the M3x10 screws.

Installing Raspberry Pi
1. Place the 20 mm and 40 mm posts on the mounting deck, fix them with M3x8

screws.

Using FS-A8S

39

2. Use an M3x10 bolt to cut M3 carving in the Raspberry Pi mounting holes.

3. Screw the 6mm racks into the Raspberry Pi board, secure them with nylon
nuts if necessary.

4. Mount the Raspberry Pi onto the mounting deck using M3x6 screws.

5. Install the assembled module into the corresponding slots on the main deck
of the drone.

Using FS-A8S

40

6. Plug the 5V JST into the corresponding power pins on the Raspberry Pi.

7. Take 4 Dupont wires, cut 5–7 cm of cable and solder to the corresponding
pins of the rangefinder.

| Wire | Rangefinder pin | |------|-----------------| | Red | 5v | | Black | GND | |
Yellow | SDA | | Green | SCL |

Using FS-A8S

41

8. Install the rangefinder on the grip deck and glue the radio to the 3M tape.

Install the rangefinder so that the nuts do not rest directly on the board.
With this installation, if there is a high probability of damaging the
board elements.

9. Install 4 20mm nylon posts and fix them with M3x8 bolts.

10. Place the camera on the small mounting deck and secure it with two short
self-tapping screws.

Using FS-A8S

42

If you attach the camera to the upper right corner and the screw head
touches the element on the camera, the camera will not work.

11. Place the small mounting deck with the camera on the stands and secure
with the M3x8 bolts.

12. Place the assembled module over the Raspberry Pi module and fix it with
M3x8 bolts.

13. Connect the camera and Raspberry Pi with a ribbon cable.

14. Connect the rangefinder to the Raspberry Pi into the appropriate pins.

Using FS-A8S

43

15. Connect the radio and the flight controller with a 4-pin cable.

Installing LED strip and legs
1. Assemble the hoop for the LED strip by locking the ends together.

2. Solder the JST male to the power pad and the Dupont-female to the signal
pad.

3. Stick the LED strip to the hoop, for greater strength, tighten it with 3-4
clamps.

Using FS-A8S

44

4. Install the feet on the stiffener plate with self-locking nuts and M3x8 screws
only using the outermost mounting holes. From below, between the plates of
the legs, install a damper silicone ring.

5. Bend the legs back and install the hoop with the LED strip in the special
groove on them, so that the connection cables exit from the tail side of the
copter.

6. Secure the legs with self-locking nuts and M3x10 screws.

7. Connect the LED strip power to the JST 5V connector on the power
distribution board.

Using FS-A8S

45

8. Connect the signal output of the LED strip in the Raspberry Ri to pin GPIO21.

9. Install the mounting deck and secure it with M3x8 screws.

Setting protection
1. Assemble the lower level of protection using 40mm posts and M3x10 screws.

2. Assemble the upper layer of protection using the M3x10 screws.

Using FS-A8S

46

3. Install the protection and fix it to the beams with self-locking nuts and M3x10
screws.

4. Connect the flight controller to your Raspberry Pi using the USB cable.

5. Install the battery strap.

Using FS-A8S

47

The drone is assembled, next perform the "setup" step.

Using FS-A8S

48

Clover 4 assembly

Frame base assembly
To increase the strength of the frame, you can print on a 3D printer or cut
on a laser cutter reinforcing pads.

1. Mount the reinforcement pads on the stiffening ribs if you have them.
Proceed without them if you don't.

2. Align two carbon stiffening ribs using the center notch.

Using FS-A8S

49

3. Install the top carbon deck using notches as guides.

4. Place self-locking steel nuts into the slots in reinforcement plates and tighten
the assembly with M3x8 screws.

Installing motors
1. Unbox the motors.
2. Shorten the motor wires using wire strippers or side cutters:

Cut wires to 30 mm.
Strip 5 mm of insulation while taking care to not damage the cores

Using FS-A8S

50

Twist the cores.

Tin the wires. You may want to use tweezers to hold the wire.
3. Place the motor on the support arm.

4. Use hexagonal M3x5 screws to attach the motor to its arm.

Perform these actions for each motor.

Frame assembly
1. Install the support arms on the frame base according to their rotation

direction. Use notches as guides.

Note the motor nut colors when installing the arms. Motors with red
nuts should be placed on the front right and back left arms, with black
ones - on the front left and back right arms.

2. Attach the arms to the frame base using 8 M3x8 screws, 6 steel nuts, and 2
15 mm spacers.

Using FS-A8S

51

Preparing the power distribution board
1. Tin the pads on the power distribution board.
2. Check the board for shorts using a multimeter:

Set your multimeter to the Continuity Test mode.
Ensure your multimeter works by connecting the probes to each other.
The multimeter should beep.
Connect one of the probes to the «+» pad and the other to «-»/GND. If
there is a short circuit, the multimeter will beep.

Mounting the PDB
1. Attach four 6 mm standoffs on the top carbon deck using M3x6 screws.

Using FS-A8S

52

2. Place the PDB on the standoffs.

3. Make sure the arrow on the PDB is pointing in the same direction as the
arrow on the top carbon deck.

Soldering the speed controllers and the
BEC

1. Solder the motor wires to the electronic speed controllers (ESCs).
2. Solder the ESC power wires to the power distribution board (red to «+»,

black to «-»).

Using FS-A8S

53

3. Solder power wires of the battery elimination circuit in parallel to one of the
ESC power wires (red to «+», black to «-»).

4. Check the board for shorts using a multimeter.

Setting up PWM mode on RC

Turn on your transmitter using the POWER slider. If the RC transmitter is locked,
place all controls in their neutral position:

1. Left stick should be in the lower center position.
2. Right stick should be centered.
3. The switches (A, B, C, D) should be in the top position.

Using FS-A8S

54

Make sure the transmitter operates in the PWM mode:

1. Power down the receiver.
2. Hold down the "OK" button to enter the menu.
3. Select the "System setup" option, press "OK" to enter the submenu.
4. Select "RX Setup" option.
5. Select "Output mode".
6. Make sure the "PWM" option is selected.
7. Save settings by holding the "Cancel" button.

Binding the RC transmitter and receiver

1. Turn off the RC transmitter with the POWER slider.
2. Connect the RC receiver to the 5 V BEC output. Connect the black wire into

one of the bottom pins and the red wire to one of the central pins.
3. Place the binding jumper on the B/VCC output.
4. Connect the battery pack.
5. The LED on the RC receiver should start to blink.

Using FS-A8S

55

6. Hold down the BIND KEY on the RC transmitter.

7. Turn on the RC transmitter while holding the BIND KEY

8. Wait for the RXBind ok message on the RC transmitter

9. Disconnect the binding jumper.

Using FS-A8S

56

10. The LED on the RC receiver should be lit continuously.

Checking the motor rotation direction

Motors with red nuts should rotate counterclockwise, the ones with black nuts
should rotate clockwise. Correct rotation direction should also be printed on the
motors. You can use a servo tester or your RC transmitter and receiver to check
rotation direction.

1. Disconnect the battery pack and power down the transmitter.
2. Connect the signal wires from the ESC to CH3 pins on the output. The white

wire should go to the top pin, the black one should go to the bottom one.
3. Power on the transmitter. Make sure the left stick is in the bottom position.
4. Connect the battery pack.
5. Slowly move the left stick up until the motor starts to spin.

If the motor rotation direction is wrong, switch any two motor wires.

You can also change motor direction by reprogramming the speed
controllers. The process is described in the ESC firmware flashing article.

Do this for each motor.

Switching the transmitter back to PPM mode

The flight controller expects PPM signal from your RC gear. Switch your
transmitter back to PPM before flight.

1. Make sure the receiver is not powered.

Using FS-A8S

57

2. Hold down the "OK" button to enter the menu.
3. Select the "System setup" option, press "OK" to enter the submenu.
4. Select "RX Setup" option.
5. Select "Output mode".
6. Make sure the "PPM" option is selected.
7. Save settings by holding the "Cancel" button.

Mounting the flight controller plate
1. Attach four 6 mm standoffs on top of PDB.

2. Connect the flight controller power cable to the PDB.

3. Place the polycarbonate plate on the standoffs and fix them with plastic nuts.

Mounting the flight controller
1. Insert the microSD card into your flight controller.

Using FS-A8S

58

2. Align the flight controller so that the arrows on the controller and on the top
carbon deck point in the same direction.

3. Attach the flight controller to the flight controller plate using 3M double-sided
adhesive pads.

4. Connect the power cable to the "POWER" input of the flight controller.

5. Attach four 40 mm aluminum spacers to the top carbon deck using M3x10
screws.

Using FS-A8S

59

6. Connect signal wires to the flight controller as shown in these pictures:

7. Attach two 15 mm spacers to the top carbon deck using M3x8 screws.

Using FS-A8S

60

8. Attach two 15 mm spacers to the top carbon deck and the front arms using
M3x10 screws (this was already described in the "Frame Assembly" section,
p. 2).

Mounting the LED strip ring
1. Bend the polycarbonate strip into a ring and use the locks to fix it in this

shape.
2. Fix the ring on the frame using appropriate notches.

Installing the Raspberry Pi

Using FS-A8S

61

1. Insert your microSD card with our image into the Raspberry Pi

2. Attach the Raspberry Pi using four standoffs.

3. Route the BEC wires through the channel in the top carbon deck.

4. Connect the BEC outputs according to the following image:

Installing the LED strip on the LED strip
ring

1. Check wires on the strip (and solder them on if they're missing)

Using FS-A8S

62

2. Attach the LED strip to the ring using the adhesive layer on the strip. Use zip
ties to fix it in place.

Connecting the LED strip to Raspberry Pi
1. Power the LED strip from a separate BEC. Connect the «+» and «-» leads to

5v and Ground respectively.

Using FS-A8S

63

2. Connect the D lead to GPIO21 (consult the relevant article for more
information).

Installing the camera cable
1. Open the slot connector by lifting the T-clip.
2. Insert the ribbon cable.
3. Press the T-clip down to secure the cable.

Mounting the lower deck periphery

Using FS-A8S

64

1. Prepare the laser rangefinder by soldering leads to it.
2. Use four 2x5 self-tapping screws to secure the camera.

Make sure the screws don't touch any components on the camera
PCB! Otherwise the camera may not function properly.

3. Mount the laser rangefinder on the lower deck using two M3x8 screws and
steel nuts.

4. Attach RC receiver to the lower deck using 3M double-sided adhesive pads.

5. Mount the lower deck assembly using four M3x10 screws.

6. Connect the camera ribbon cable to the camera.

Using FS-A8S

65

7. Connect the laser rangefinder to the Raspberry Pi using the following pinout:

Connect VCC to pin 1 (3v3)
Connect GND to pin 9 (Ground)
Connect SDA to pin 3 (GPIO2)
Connect SCL to pin 5 (GPIO3)

Mounting the landing gear
1. Attach 8 landing gear pieces using M3x10 screws and steel nuts.

2. Attach dampening pads to the landing gear pieces using M3x10 screws and
steel nuts.

Using FS-A8S

66

Connecting the cables
1. Connect RC cable to the RCIN port on the flight controller.

2. Connect RC cable to RC receiver.

Mounting the propeller guards
1. Assemble the lower part of the guards using twelve M3x10 screws and

twelve 40 mm plastic spacers.

Using FS-A8S

67

2. Assemble the top part using twelve M3x10 screws.

3. Attach the assembly to the drone using four M3x10 screws and steel nuts.

Mounting the top deck
1. Attach the battery holder to the top deck with four M3x8 screws and steel

nuts.
2. Thread the battery strap through the slots in the deck.
3. Attach the top deck using four M3x10 screws.

Using FS-A8S

68

4. Connect the flight controller to the Raspberry Pi using retractable USB cable.

5. Attach the USB cable reel where convenient using 3M double-sided adhesive
pads while making sure the cable does not interfere with the propellers.

Mounting the propellers and preparing
for flight
Perform the quadrotor components setup according to the "Configuration" section.

Using FS-A8S

69

Be sure to not mount the propellers until the setup is complete. Do it only
when you are ready to fly.

Attach the propellers according to their rotation direction. The battery should be
disconnected during propeller installation.

Installing the battery
Make sure all cables are secured and nothing interferes with the propellers!

Check the quadrotor assembly:

The balance connector should be fixed under the battery strap.
The ESCs should be zip tied to the frame.
All wires from the PDB and flight controller should be tucked under a velcro
strap wound around aluminum spacers.

Be sure to install and setup the voltage indicator before flying, so as not to
overdischarge the battery. To configure the indicator, use the button located at its
base. The displayed numbers during setup indicate the minimum possible voltage
in each cell of the battery, the recommended value is 3.5.

Using FS-A8S

70

Sound indication means that your battery is low and needs to be charged.

The drone is ready to fly!

Using FS-A8S

71

Assembly of Clover 3
This manual discusses the assembly of the COEX Clover 3 kit with a 4 in 1 EDC
circuit-board.

Before using soldering equipment, be sure to read the safety precautions
when soldering.

Additional equipment

Conventional symbols

Using FS-A8S

72

Motor installation
1. Unpack the motors.
2. Attach a motor to the motor mount with M3x6 hex screws (the shortest

screws supplied with the motors).

A hex wrench is included.

3. Insert M3 nuts (4 pcs) into the plastic holder.

The choice is yours to use a long screw or pliers.

4. Secure the motor mount, the lower motor mount guard and the holder with
M3x12 screws, using a Phillips screwdriver.

5. Using a clamp connect the motor mount and its bottom guard.

Cut the remaining part of the clamp (cable tie) with scissors.

Frame elements installation
1. Insert the M3 plastic nuts (4 pcs) for mounting the PDB on the frame with

M3x8 screws.

Using FS-A8S

73

2. Install 6 mm legs (4 pcs) for attaching the Raspberry Pi to the frame with
M3x8 screws.

3. Attach the assembled unit to the frame with M3x16 screws, complying with
the layout.

4. Install the frame for the LED strip, using the slots in the leg holders.

BEC voltage converter installation(to be
soldered and tested)

1. Unpack the power board and install the power ribbon cable.
2. Switch the multimeter in the DC voltage measurement mode (20V or 200V

range).
3. Check the correct functioning of the power board by connecting the battery.

Voltage measurements are to be made between black and red wires.
Output voltage at the XT30 connector should be equal to the battery
voltage (10 V to 12.6 V).
The output voltage at the power ribbon cable should be between 4.9 V to
5.3 V.

4. Unpack the voltage converter and remove the transparent insulation.
5. Solder two additional wires to the BEC

Take 3 male-female wires from the kit (red, black, and any color)
The red and black wires are to be tinned on both ends using tweezers.
The blue wire is to be tinned from the side of the MALE connector.

To tin means:

Apply flux to the exposed part of the wire.
Cover with tin.

Solder the red and the black wires to BEC:

 BLACK -> OUT-
 RED -> OUT+

6. Check BEC functioning.

Using FS-A8S

74

Solder the BEC to the power board:

 BLACK -> -
 RED -> +

Connect the battery and check the voltage at the wires soldered to BEC
(from step 5).

5 V - great, everything is working properly!

more than 10 V - disconnect the power and move the yellow jumper to
the other tweezers.

0 V - not soldered properly.

If the BEC outputs 5 V, isolate the soldered connection with a black heat-
shrink tubing.

7. LED strip installation

Solder the wires from BEC (from step 5) to the LED strip.
Remove the silicone layer on the strip (make an incision with a knife and
tear).
Tin the contacts of the LED strip.

 Red -> +5V
 Black -> GND
 Blue -> Din

4 in 1 ESC board and the PDB power-
board installation

1. Install the 4 in 1 ESC circuit-board as shown in the picture.

Connect the phase wires of the motors with ESCs wires.

2. Attach the ESC board with 6 mm legs (4 pcs.).

Screw M3 plastic nuts (4 PCs.) to the legs.

Using FS-A8S

75

3. Install the PDB power distribution board as shown in the picture (the XT60
connector should point to the tail of the drone).

4. Connect the wires of the PCB power supply board and ESC XT30 board.

Pairing the receiver and transmitter
1. Connect the 5V wire from BEC to the connector of the receiver.

Insert the BIND connector into the rightmost B/VCC port.

2. Connect the battery. The indicator on the receiver should flash rapidly (reset
mode).

3. Press and hold the BIND button on the remote, and switch the remote on.

The RXBinding process will be displayed on the remote.

4. After pairing (additional lines will be displayed on the remote):

Remove the BIND connector from the receiver.
Disconnect the battery.

If the remote cannot be powered on, or is blocked, see article remote faults.

Checking the directions of motors
rotation

1. Turn the transmitter ON

Using FS-A8S

76

Make sure PPM in the RX Setup menu is disabled (section "No
communications with the flight controller")

In point 3, select “RX setup” > “PPM OUTPUT” > “Off”.

Save changes (hold pressed the “CANCEL” button).

2. Connect the S1 orange wire from the ESC board to CH3 on the receiver.
Connect external power.

3. Using the left stick, set throttle to 10 %.
4. Check the motor rotation direction according to the scheme. Repeat for each

motor. Thus, it will be clear which motor is controlled.
5. If you have to change the rotation direction, swap any two phase wires of the

motor (needs re-connection).

Installation and connection of the
Pixracer flight controller

1. Install the Pixracer flight controller on double-sided 3M adhesive tape (2 – 3
layers). The flight controller may also be removed from the housing and firmly
mounted on the M3x6 leg.

2. Install 40 mm legs using M3x8 screws.

Connect the POWER connector.

3. Connect ESCs as shown in the picture.

More about connecting 4 in 1 ESCs.

4. Connect the ribbon cable from the radio receiver to the RCIN connector in
Pixracer.

Using FS-A8S

77

Raspberry installation
1. Turn the drone upside down.

Install the Raspberry on the legs using Raspberry mounting holes.

USB connectors should point to the tail of the drone.

2. Installation of the ribbon cable for the camera:

lift the latch;
connect the ribbon cable;
close the latch.

3. Connecting Raspberry to power supply:

 5V -> pin 04 (DC power 5 V)
 GND -> pin 06 (Ground)
 Connecting the LED strip pin 40 (GPIO21)

4. Assembling the mount for the RPi camera.

Use an M3x16 screw and an M3 nut

Arduino and FlySky radio receiver
installation

Using FS-A8S

78

1. Solder Arduino Nano micro-controller pins to its board.
2. Install the micro-controller into a special mount, and attach to the lower deck

using M3x16 screws (4 pcs).
3. Using double-sided tape, attach the receiver as shown in the picture.
4. Connect the ribbon cable from the radio receiver to Pixracer as shown in the

picture.

RPi camera installation
1. Attach the mount for the RPi camera assembly to the lower deck with M3x12

screws (2 pcs.)
2. Connect the ribbon cable to the RPi camera.
3. Install the camera into the mount, secure it with M2 self-tappers.
4. Attach Raspberry with 30 mm legs (4 pcs.).

Attach the lower deck assembly to the rack with M3x8 screws (4 pcs.)

5. Install the legs into the mounts (4 pcs).

 white -> PPM
 red -> 5V
 black -> GND
 orange, green -> currently not used. They are set to the unused pins of t

Using FS-A8S

79

Installation of the remaining structural
elements

1. Install the bottom guard using M3x12 screws (8 units) and the 30 mm legs (8
pcs).

2. Install the top guard using M3x12 screws (8 pcs).
3. Insert the strap into the upper deck for attaching the battery.

Secure the upper deck with M3x8 screws (4 pcs.)

USB connectors installation
1. Connect Pixracer to Raspberry using the micro USB - USB cable.
2. Connect Arduino to Raspberry using the micro USB - USB cable.

.

Read more about connection in article.

Using FS-A8S

80

Clover 2 construction kit assembly
instruction

The constructor kit contents

Central frame ×2.
Additional frame ×4.

Using FS-A8S

81

Motor mount ×8.
Legs x8.
Motor mount guard ×8.
Propeller guard ×16.
Side guard ×16.
Dalprop 5045 plastic propeller ×4.
Racerstar BR2205 2300kV brushless motor ×4.
Speed controllers ESC, DYS XSD20A ×4.
Power controller XT60 pin ×1.
Power connector XT60 socket ×1.
Three-wire female-female flat cable ×2.
Multicore silicone insulated copper wire 14AWG (red, black), 50 cm long
Power distribution board PDB BeeRotor Power Distribution Board V2.0 ×1.
Li-ion rechargeable battery (battery) 18650 ×8.
EFEST Luc V4 Li-lon Charger ×1.
Protective case for regulators ×4.
Legs attachment ×8.
Pixhawk flight controller ×1.
FlySky i6 radio receiver ×1.
FlySky i6 radio transmitter ×1.
EFEST LUC V4 Charger ×1.
Micro USB to USB Cable ×1
Battery compartment 18650 Li-ion ×1
Wire copper multicore silicone insulated cable 18AWG (red, black), 100 cm
long
AA battery ×4
Jumper, Bind-plug

Fasteners

6 mm plastic legs ×28.
30 mm plastic legs ×32.
M3x8 screws ×48.
M3x12 screws ×24.
M3x16 screws ×40.
Plastic nuts ×8.
Metal nuts ×48.
Stickers for the battery compartment ×8.
Thermal contraction tube ⌀15, .50 cm
Thermal contraction tube ⌀5, 100 cm
Double-sided 3M adhesive tape ×16.
Screwdriver ×1 (visualization needed)
Insulation tape ×1
Scissors ×1
Strap for the battery 250 mm ×1

Flysky i6 transmitter

Using FS-A8S

82

1. Switch A (SwA).
2. Switch B (SwB).
3. Switch (SwC).
4. Switch D (SwD).
5. Left stick.
6. Right stick.
7. Left trimmer.
8. Right trimmer.
9. Up button.

10. Down button.
11. OK button.
12. Cancel button.
13. BIND KEY button.
14. POWER switch.
15. LCD.
16. Handle A (VrA).
17. Handle B (VrB).

Additional equipment

This equipment is not part of the Clover 2 constructor
kit, but it is required for the assembly process

1. Soldering iron
2. Colophony/ Flux (neutral)
3. Solder
4. Hot air gun
5. Pliers
6. Pincers
7. Stationery knife

Using FS-A8S

83

8. Multimeter

Soldering safety

Assembly order

Installation of motors

Unpack the motors. Using pliers, shorten the wires on the motors by cutting
half their length (leaving about 25 mm).

Strip

remove 2 mm of insulation from the ends of the wire without damaging the
copper strands.

Twist the wires.

Tin wires

Apply flux to the exposed part of the wire.
Cover the solder using tweezers.

Using FS-A8S

84

Fix the motor on the mount

Install the motor on the engraved side of the mount.
Attach the motors to the mounts with M3x8 screws using a screwdriver.

Mounts with motors should be arranged according to the diagram. The
arrows indicate the direction of motor rotation direction.

Using FS-A8S

85

Tin three contact pads of the speed controller

Apply flux
Apply solder

By warming up the contact pads of the controller, the tin will evenly fill the entire
pad. To do so, apply heat by holding the soldering iron on the contact pads for 2
sencods (or more if needed).

Using FS-A8S

86

Repeat this operation for the remaining three ESC

Solder the wires of the motors to the ESC

Solder the prepared wires of the motors to the pads of the controllers.

Using FS-A8S

87

Repeat this operation for the remaining three ESC

Power connectors installation

Preparing wires for XT60 power connectors

1. Take a bundle of red and black wires marked 14AWG
2. Cut 4 pieces of wire of the following lengths

3. Length 7 cm (XT60 pin power connector) - 1 red, 1 black

4. Length 9 cm (XT60 socket power connector) - 1 red, 1 black

Preparing XT60 pin and XT60 socket high-power
connectors

Article about high-power connectors and their designations

Using FS-A8S

88

1. Tin two red and black 14AWG 7 cm long power wires for the XT60 pin
connector.

2. Tin contact pads of the XT60 pin connector.
3. Solder the black wire to the “-” contact of the connector.
4. Solder the red wire to the “+” contact of the connector.
5. Cut ⌀5 heat-shrink tubing (2 sections × 10 mm).
6. Slip the ⌀5 heat-shrink tubing tube on the wires so that they cover the contact

pads of the wires from XT60.
7. Shrink the heat-shrink tubing with a hot air gun.

8. Repeat the procedure for XT60 socket connector.

Preparation of the 5V power connectors for the
control circuit

1. Trim/pull out all pins from one of the connectors. Disconnect it.
2. Using an utility knife, pry the retainer off on the remaining connector to

release the 3rd wire.
3. Remove the 3rd (orange) wire from the connector, since it is not needed.
4. The length of the remaining black and red wires should be of 10 – 12 cm.

Using FS-A8S

89

Installation of the power distribution board

Pre-soldering check

Article about continuity test

Check OPEN CONDITION of the following circuits (the multimeter does not
beep):

“BAT+” and “BAT-”
“12V” and “GND”
“5V” and “GND”

Using FS-A8S

90

Check CLOSED CONDITION of the following circuits (the multimeter beeps):

“BAT-” with every contact marked “-” and “GND”
“BAT+”, with every contact marked “+”

Tin the contact pads of the power board

1. Tin* the contact pads of the power board.
2. Using a multimeter, check absence of short-circuits on the PCB (check

continuity).

By warming up the contact pads of the controller, the tin will evenly fill the entire
pad. To do so, apply heat by holding the soldering iron on the contact pads for 2
sencods (or more if needed).

Soldering the XT60 high power connector

Solder the connector for battery, taking into account the polarity on the contact
pads.

IMPORTANT NOTE about polarity

the red wire is “+”
the black wire is “-”

Using FS-A8S

91

Soldering of the power connector for the 5V control
circuit

Solder the 5V connector, taking into account the polarity on the contact pads. (in
the picture: the red wire is “+”)

Installation of the battery compartment

Preparation of jumpers (3 pcs.)

Cut off 2 cm of high-power wire.
Strip on both ends.
Tin.
Make 3 jumpers.
Solder the jumpers according to the diagram.
Check for continuity with a multimeter. If necessary, clean with sand paper.

Preparation of the battery compartment

Using FS-A8S

92

Conforming to the polarity, glue the sticker with markings inside the battery
compartment.
Stick a strip of adhesive tape to the bottom of the compartment.

Installation of the power distribution board

Fix the power board to the frame with M3x8 screws and plastic nuts.

The white arrow on the BeeRotor board points towards the fore cutout.

Installation of elements

Using FS-A8S

93

1. Install the nuts into plastic holders.

2. Fix the motor mounts to the frame with M3x16 screws.
The mounts are installed above the frame.
Plastic holders are installed beneath the frame.

Using FS-A8S

94

3. Arrangement of motors. Check arrangement of the motors (the motors with
black nuts should be in the top left and lower right corners).

4. Put the power wires of the ESC through the holes.

Soldering the high-power circuit board

Solder the high-power wires of the ESC to the power supply board observing
polarity.

Using FS-A8S

95

IMPORTANT NOTE about polarity

the red wire is “+”
the black wire is “-”

Pairing the receiver and transmitter

1. Connect the radio receiver to the 5V connector. In any connector the GND is
in the bottom. In the diagram, the power is labeled 5V

2. Connect the battery. The LED on the radio receiver should be flashing. !
[Connecting the battery]

SAFETY when working with the battery

Using FS-A8S

96

Enabling the transmitter

1. Insert the jumper into B/VCC of the radio receiver (short "ground" and
"signal")

2. On the transmitter, hold down the BIND KEY button.
3. Power up the transmitter (flip the POWER switch, do not release BIND KEY).
4. Connect the battery to the drone.
5. Wait for synchronization.
6. Disconnect the jumper.
7. The LED will remain ON continuously.

Radio equipment troubleshooting manual

Checking the motors direction of rotation

1. Apply stickers to the 18650 batteries.

Using FS-A8S

97

2. Install the 18650 batteries into the compartment observing polarity.

3. Check that the 5V power plug is connected to the receiver according to the
circuit diagram.

4. Connect the motor ESC to channel 3, marked as CH3 on the receiver as on
the circuit diagram.

5. Connect external power (battery).
6. Turn the transmitter ON.
7. Using the left stick, set throttle to 10 %.
8. Check the motor direction of rotation according to the scheme.

Using FS-A8S

98

9. If you have to change the rotation direction, swap any two phase wires of the
motor (needs resoldering).

Installation of the radio receiver

1. Install the 30 mm plastic legs on the frame with M3x8 screws.
2. Pass the 5V power connector through the slit.

Using FS-A8S

99

3. Attach the receiver to the bottom of the additional frame using double-sided
adhesive tape and following the orientation of the engraved arrow. The
antennas are to be pointing forward.

4. Install the 3-wire flat cable into the PPM / CH1 channel.

5. Pass them through the slit to the 5 V connector.
6. Screw the bottom an additional frame to the legs on the central frame with

M3x8 screws.

Using FS-A8S

100

The directions of the arrows on the power supply board and the
additional frame should coincide

Installation of the flight controller

Turn the assembly upside down

Installation of the Pixhawk flight controller

Using FS-A8S

101

1. Stick the two-sided adhesive tape in the corners of the flight controller.

When the motors rotate, vibrations occur, which affect sensors of the
Pixhawk flight controller. To avoid this effect, the number of double-
sided tape layers should be increased up to 4 – 5.

2. Install the flight controller in the center of the frame.

The arrows on the frame and Pixhawk should point in the same
direction

Connecting the flight controller according to the
circuit diagram

1. Connect PPM (three-wire flat cable) to the RCIN port
2. Motors to MAIN OUT ports 1,2,3,4, according to the circuit diagram
3. Power by PDB (5V/VCC) to any port except for SB (SBUS)

Using FS-A8S

102

ESC assembly

1. Stick the double-sided adhesive tape to the base of the ESC protective case
Adhesive tape on the ESC case

2. Put the ESCs into protective cases. Fasten the assembly to the motor
mounts of the frame.

Installation of guard

Using FS-A8S

103

1. Attach the lower guard with M3x16 screw to the motor mounts of the frame.

2. Attach the feet to the plastic holders with M3x16 screws.

Using FS-A8S

104

3. Attach the 30 mm long legs to the holes of the lower guard with M3x12 screw.

4. Attach the top guard with M3x12 screws.

Installation of the battery compartment

Requires the following components:

M3x12 screws (4 pcs)
M3 nuts (4 pcs)
Additional frame (1 pc)
Battery compartment (1 pc)

Using FS-A8S

105

Attach the battery compartment on top of the additional frame with M3x12
screws and nuts.

Attach the top additional frame to the legs with M3x8 screws.

Install the battery into the battery compartment.

Installation of antennas

1. Attach antennas on double-sided adhesive tape or duct tape, and put the
antennae into the front holes of the top additional frame.

The drone is ready for configuration!

Using FS-A8S

106

Safety notes for assembly and
configuration

1. Remove the propellers.“All ground operations are to be performed with
propellers removed. Propellers are to be installed on the motors before the
flight only.”

2. Disconnect the battery. Keep the power off. “Assembly, configuration, and
maintenance should be performed with power disconnected. Connect power
only for testing electronic components of the drone. After testing, power is to
be disconnected before other works.”

3. Call for help. “If you experience problem when working with the drone,
contact the instructor or the teacher, do not try to solve the problem yourself.”

Security when working with 18650 Li-ion
batteries

1. Handle batteries carefully. Avoid falls, bumps, and deformations.
2. When connecting (disconnecting) batteries, hold only the connectors, never

pull or tug the wires.
3. If you see open connectors, violation of insulation or battery compartment

integrity, do not touch it, and immediately inform the instructor or teacher.

See article safety precautions when soldering and during drone flight operation

Using FS-A8S

107

Initial setup

Installing QGroundControl
QGroundControl is a software package that can be used to flash, configure and
calibrate the flight controller.

Download and install the version for your operating system from the official
QGroundControl website. When asked, agree to install additional drivers.

Consult the official QGroundControl user guide if anything goes wrong.

Preparing the MicroSD card
Prepare the MicroSD card for your flight controller.

Put the card into your computer (use an adapter if necessary).

https://docs.qgroundcontrol.com/en/getting_started/download_and_install.html
https://docs.qgroundcontrol.com/en/

Using FS-A8S

108

Format the card to FAT32 filesystem. Right click on the SD card icon in
Windows Explorer and select "Format". Use the Disk Utility in macOS.
Use "Safely Remove Hardware" and unplug the card.
Put the card into your flight controller.

Flashing the flight controller
Main article: https://docs.qgroundcontrol.com/en/SetupView/Firmware.html

Do not connect your flight controller prior to flashing.

We recommend using the modified version of PX4 with COEX patches for the
Clover drone, especially for autonomous flights. Download the latest stable
version from our GitHub.

To use all the most recent PX4 functions you also can use the latest official
firmware version (experimentally).

Flash the flight controller with this firmware:

1. Disconnect the flight controller from computer (if connected).
2. Launch QGroundControl software.
3. Go to Vehicle Setup panel (click on the QGroundControl logo in the top-left

corner) and select Firmware menu.
4. Connect your flight controller to your PC over USB.
5. Select PX4 Flight Stack in the right bar appeared.

https://docs.qgroundcontrol.com/en/SetupView/Firmware.html
https://github.com/CopterExpress/Firmware/releases

Using FS-A8S

109

6. To use COEX patched firmware:

Check Advanced Settings checkbox.
Select Custom firmware file... from the dropdown list.
Press OK and select the file that you've downloaded.

To use the latest official stable firmware just press OK.

Wait for QGroundControl to finish flashing the flight controller.

Do not unplug the flight controller during the flashing process.

Read more about the firmware in the "Pixhawk Firmware" article.

Configuring the flight controller
You can use the Raspberry Pi to access the flight controller over Wi-Fi for
the rest of the setup process.

This is how the main QGroundControl settings window will look like:

Using FS-A8S

110

1. Parameters that require setup: Airframe, Radio, Sensors, Flight Modes.
2. Current firmware version.
3. Current flight mode.
4. Error messages.

Selecting the airframe

1. Open the Vehicle Setup tab.
2. Select the Airframe menu.
3. Select the Quadrotor X airframe type.
4. For Clover 4 select COEX Clover 4 from the dropdown menu. Otherwise

select Generic Quadrotor X.

Using FS-A8S

111

5. Return to the top of the list and press Apply and Restart button, confirm by
pressing Apply.

6. Wait for the settings to be applied and for the flight controller to restart.

Setting parameters

Open the Vehicle Setup tab and select the Parameters menu. You can use the
Search field to find parameters by name. Recommended parameters values are
given in the further documentation and also in the parameters summary article.

Press the Save button to save the changed value to the flight controller. Changing
some parameters require rebooting the flight controller. You can do that by
pressing the Tools button and selecting the Reboot vehicle option.

Configuring PID regulators

Selecting COEX Clover 4 frame subtype doesn't require setting PID
coefficients.

Averaged PID coefficients for the Clover 4 drone

 MC_PITCHRATE_P = 0.087
 MC_PITCHRATE_I = 0.037
 MC_PITCHRATE_D = 0.0044
 MC_PITCH_P = 8.5
 MC_ROLLRATE_P = 0.087
 MC_ROLLRATE_I = 0.037
 MC_ROLLRATE_D = 0.0044
 MC_ROLL_P = 8.5
 MPC_XY_VEL_P = 0.11
 MPC_XY_VEL_D = 0.013
 MPC_XY_P = 1.1

Using FS-A8S

112

 MPC_Z_VEL_P = 0.24
 MPC_Z_P = 1.2

Averaged PID coefficients for the Clover 3 drone

 MC_PITCHRATE_P = 0.145
 MC_PITCHRATE_I = 0.050
 MC_PITCHRATE_D = 0.0025
 MC_ROLLRATE_P = 0.145
 MC_ROLLRATE_I = 0.050
 MC_ROLLRATE_D = 0.0025

Note that you should fine-tune the PID parameters for each drone
individually.

Circuit breaker parameters

1. Set CBRK_USB_CHK to 197848 to allow flights with the USB cable connected.
2. Disable safety switch check: CBRK_IO_SAFETY = 22027.

Next: Sensor calibration.

Using FS-A8S

113

Sensor calibration
In order to perform the sensor calibration, select the Vehicle Setup tab and
choose the Sensors menu.

If you use the flight controller COEX Pix, and it's installed with servo pins
faced backwards, all Autopilot Orientation columns must specify
 ROTATION_ROLL_180_YAW_90 , otherwise the flight controller will not correctly
perceive the tilt and rotation of the copter.

Compass

1. Select the Compass submenu
2. Choose the flight controller orientation (ROTATION_NONE if the arrow on the

flight controller is aligned with the arrow on the frame).
3. Press OK.
4. Put the drone in one of the orientations marked by the red outline and wait for

the appropriate outline to turn yellow.
5. Spin the drone as required until the outline turns green. Do this for all

orientations.

Read more in the PX4 docs: https://docs.px4.io/master/en/config/compass.html.

Gyroscope

https://docs.px4.io/master/en/config/compass.html

Using FS-A8S

114

1. Select the Gyroscope submenu.
2. Place the drone on a flat, horizontal surface.
3. Press OK.
4. Wait for the calibration to finish.s

The drone should stay completely still during the calibration.

Read more in the PX4 docs: https://docs.px4.io/master/en/config/gyroscope.html.

Accelerometer

1. Select the Accelerometer submenu.
2. Choose the flight controller orientation (ROTATION_NONE if the arrow on the

flight controller is aligned with the arrow on the frame).

https://docs.px4.io/master/en/config/gyroscope.html

Using FS-A8S

115

3. Put the drone in one of the orientations marked by the red outline and wait for
the appropriate outline to turn yellow.

4. Hold the drone in this orientation until the outline turns green. Do this for all
orientations.

Read more in the PX4 docs:
https://docs.px4.io/master/en/config/accelerometer.html.

Level horizon

1. Select the Level Horizon submenu.
2. Choose the flight controller orientation (ROTATION_NONE if the arrow on the

flight controller is aligned with the arrow on the frame).
3. Place the drone on a flat, horizontal surface.
4. Press OK.
5. Wait for the calibration to finish.

Read more in the PX4 docs:
https://docs.px4.io/master/en/config/level_horizon_calibration.html.

Next: RC setup.

https://docs.px4.io/master/en/config/accelerometer.html
https://docs.px4.io/master/en/config/level_horizon_calibration.html

Using FS-A8S

116

RC setup

Before connecting and calibrating the RC, make sure that:

There is no battery connected to the drone.
The propellers are not mounted.

Connecting the RC transmitter
1. In QGroundControl software, go the Vehicle Setup panel and choose the

Radio menu.
2. Power on the transmitter by sliding the POWER slider up.
3. Make sure the transmitter-receiver link is working.

The transmitter LCD screen should display the connection:

The LED on the receiver should glow steadily. Read the radio troubleshooting
article if the link does not work.

Using FS-A8S

117

Transmitter calibration
1. Press the Calibrate button.
2. Set the Throttle, Yaw, Pitch, and Roll trims to 0

Trims are small constant offsets applied to a control in order to make
your drone fly correctly.
Move the trimming slider to the center using trimming buttons until you
hear a long beep. Do this for each axis.

3. Press OK in QGroundControl.

4. Place the left stick (throttle) in the bottom position and press Next.

5. Place the sticks in positions requested by QGroundControl.
6. When you get the "Move all transmitter switches and/or dials back and forth

to their extreme positions" instruction, move all switches and dials to their
extreme positions.

7. Press Next.
8. When you get the "All settings have been captured. Click Next to write the

new parameters to your board", press Next.

Further reading: https://docs.qgroundcontrol.com/en/SetupView/Radio.html

Next: Flight modes.

https://docs.qgroundcontrol.com/en/SetupView/Radio.html

Using FS-A8S

118

Using Flysky FS-A8S
The Flysky FS-A8S receiver is compatible with the Flysky FS-i6 and FS-i6x
transmitters. The receiver can output both analog PPM and digital S.Bus/i-Bus
signals to the flight controller.

S.Bus is the preferred protocol for the receiver.

Making a cable
You don't need to follow these steps if you already have the right cable;
read on to learn how to bind your transmitter.

1. Gently remove the yellow wire from the receiver connector. Use sharp
tweezers to lift up the plastic wire lock:

2. [Pixracer only] Remove the green and brown wires from the 5-pin connector:

Using FS-A8S

119

3. [COEX Pix only] Remove the green wire (or blue if the green one is not
present) from the 4-pin connector:

4. Use side cutters to cut the Dupont connectors:

Using FS-A8S

120

5. Strip and tin 5-7 mm of wire from each side:

6. Put heat shrinking tubes on the wires:

7. Solder the following wires:

black wire from the receiver connector to the black wire from the flight
controller connector;
red wire from the receiver connector to the red wire from the flight
controller connector;
white wire from the receiver connector to the white (if you're using
Pixracer) or yellow (if you're using COEX Pix) wire from the flight
controller connector:

Using FS-A8S

121

8. Put the heat shrinking tubes on the solder joints and heat them:

9. Twist your new cable:

Connect your receiver to the RC IN port on your flight controller:

Using FS-A8S

122

Double check that you're using the RC IN port on the COEX Pix:

Binding your transmitter
Do the following to bind your transmitter to the FS-A8S receiver:

1. Make sure your flight controller is powered off.
2. Hold the BIND button on the receiver:

Using FS-A8S

123

3. Turn on the flight controller. The LED light on the receiver should blink fast,
about 3 times per second.

4. Hold the BIND KEY on your transmitter and power it on. You should see a
message saying RX Binding...

5. The LED light on the receiver should start blinking slowly, about once per
second.

Using FS-A8S

124

6. Turn your transmitter off and on again. The LED light on the receiver should
glow steadily.

This receiver does not send any telemetry data back to the transmitter.
Your transmitter will not display any data like RSSI and drone battery level
on its screen. In fact, there will be no indication that the transmitter is
connected to the receiver. This is not a malfunction, the controls will still
work.

Changing the receiver mode (S.Bus/i-
Bus)
Connect your flight controller to your computer and open QGroundControl. In it,
open the Radio tab:

If it shows zero channels under the transmitter image, hold the BIND key on the
receiver for 2 seconds. You should then see 18 channels appear under the image:

Using FS-A8S

125

Using FS-A8S

126

Flight modes
PX4 mode determines how the vehicle should react to commands and RC
signals. Mode changing is usually mapped to one of the RC transmitter sticks.

In order to configure flight modes:

1. Open the Vehicle Setup panel in QGroundControl.
2. Select the Flight Modes menu.
3. Set the Mode Channel to the SwC switch (Channel 6).
4. Optionally, set the Emergency Kill Switch Channel to SwA switch (Channel

5).
5. Set desired flight modes.

The following flight modes are recommended:

Flight Mode 1: Stabilized.
Flight Mode 4: Altitude.
Flight Mode 6: Position.

6. Check mode switching by changing the switch position.

7. Choose SwA (Channel 5) as emergency motor stop (Kill switch).

Flight modes description

Manual control

In manual mode the pilot controls the drone directly. GPS, computer vision data,
and barometer are not used. Flying in these modes requires good drone piloting
skills.

STABILIZED/MANUAL — the mode with stabilized horizontal orientation.
Allows control of the throttle, the copter pitch and roll, and the yaw rate.

Using FS-A8S

127

ACRO — control of throttle and the copter's pitch rate, roll rate, and yaw rate.
Used by drone racers and in 3D piloting stunt shows.
RATTITUDE — in the center, the right stick is similar to STABILIZED, at the
edges, it passes to the ACRO mode.

Assisted flight modes

ALTCTL (ALTITUDE) — control of the altitude rate, pitch, roll and yaw
angular velocity. Requires a barometer or another altitude source.
POSCTL (POSITION) — control of the altitude rate, forward/backward and
right/left speed, and yaw angular velocity. It is the easiest flying mode. The
barometer, GPS, computer vision, and other sensors are used.

Auto flight modes

In autonomous flight modes the quadcopter ignores the control signals from the
transmitter and uses a program to fly.

OFFBOARD mode uses an external computer (like a Raspberry Pi). This
mode is used in Clover for autonomous flights.
AUTO.MISSION – PX4 uses the mission pre-loaded into the drone (the
mission is uploaded using ground control station over MAVLink). This mode
is commonly used to move in a pre-planned path using GPS as a position
source, for example, in photogrammetry.
AUTO.RTL – the copter automatically returns to the takeoff (launch) point.
AUTO.LAND – the copter lands at the current position.

Additional information: https://dev.px4.io/en/concept/flight_modes.html.

Next: Power setup.

https://dev.px4.io/en/concept/flight_modes.html

Using FS-A8S

128

Power setup
Open the Vehicle Setup tab and select the Power menu.

Calibrating the power sensor
Power sensor calibration should be done with the battery pack connected
to the drone.

1. In QGroundControl software, go the Vehicle Setup panel and choose the
Power menu.

2. Set the Number of cells parameter according to the number of cells in your
battery (3 for the Clover 4 drone).

3. Calculate the voltage divider:
Measure voltage across the battery (you may use a battery voltage
tester for that).
Press the Calculate button next to the Voltage divider label.
Put the battery voltage into the prompt and click Calculate.
Press Close to save the calculated value.

If there is no voltage indicator or manual calibration is not possible, set the
average value of the voltage divider for the Clover 4 kit (Voltage divider = 11).

Further reading: https://docs.qgroundcontrol.com/en/SetupView/Power.html.

ESC calibration

https://docs.qgroundcontrol.com/en/SetupView/Power.html

Using FS-A8S

129

Never attempt ESC calibration with propellers on! In some cases the
motors will start spinning with maximum speed.

1. Make sure the battery is disconnected and the propellers are not mounted.
2. Press Calibrate.
3. Connect the battery when prompted.
4. Wait for the Calibration complete.

Further reading:
https://docs.px4.io/master/en/advanced_config/esc_calibration.html.

Next: Failsafe configuration

https://docs.px4.io/master/en/advanced_config/esc_calibration.html

Using FS-A8S

130

Failsafe configuration
Main article is available at https://docs.px4.io/master/en/config/safety.html.

The Safety panel allows you to configure actions that should be performed when
a failsafe is triggered. You should at the very least configure the RC Loss failsafe,
which is triggered when the RC transmitter link is lost:

1. In QGroundControl software, go to the Vehicle Setup panel and choose the
Safety menu.

2. Select one of the following actions in the RC Loss Failsafe Trigger option:
Land mode – transition to automatic land mode;
Terminate – set all outputs to their failsafe values.

3. Set the timeout value before RC Loss triggers in the RC Loss Timeout field.
We recommend setting it to 2 s.

https://docs.px4.io/master/en/config/safety.html

Using FS-A8S

131

Flight
See also official PX4 flying guide: https://docs.px4.io/master/en/flying/.

This section explains the basics of manual controlling the quadcopter in different
modes using radio remote control (for autonomous flying see "Programming")
section.

Main features of radio remote control
Before you can launch your drone, you need to understand how the radio remote
control works.

The drone is controlled using two sticks on the remote control. By default, the left
stick controls throttle and yaw, and the right stick controls roll and pitch. These
terms are used for all aircraft, from airplanes to quadcopters.

Throttle – is responsible for rotation speed of the motors.
Yaw – is responsible for rotation around the vertical axis (Z), clockwise (when
tilted to the right) and counterclockwise (when tilted to the left).
Pitch – is responsible for tilting or moving forward / backward.
Roll – is responsible for tilting or moving left / right.

These descriptions assume the aircraft is turned with its back to the pilot.

Flight Modes

https://docs.px4.io/master/en/flying/

Using FS-A8S

132

Manual flight using the PX4 flight controller can be performed in different flight
modes. They determine the radio controller stick assignments and other flight
characteristics. For the complete list of flight modes, see the article "Flight
modes".

The main manual modes are described below.

STABILIZED - horizontal angle stabilization mode. In this mode, the aircraft will
hold the horizon if not controlled. Functions of sticks:

Throttle – the average speed of rotation of the motors.
Yaw – angular velocity around the vertical axis.
Pitch – the angle of inclination around the transverse axis (forward /
backward).
Roll – the angle of inclination around the longitudinal axis (left / right).

POSCTL - position holding mode (requires positioning system enabled).
Functions of sticks:

Throttle – vertical flight speed.
Yaw – angular velocity around the vertical axis.
Pitch – linear speed of the drone (forward / backward).
Roll – linear speed of the drone (left / right).

ACRO - controlling the average rotational speed of the motors and angular
speeds of the drone. This mode is the most difficult to fly and is most often used
by drone racers and 3D piloting shows to perform tricks. Functions of sticks:

Throttle – the average speed of rotation of the motors.
Yaw – angular velocity around the vertical axis.
Pitch – angular velocity around the transverse axis (forward / backward).
Roll – angular velocity around the longitudinal axis (left / right).

Other flight controllers may have different names for similar flight modes.

Preparing to fly

Installing propellers and batteries

1. Install the battery strap.

2. Set the propellers according to the motor direction pattern.

Using FS-A8S

133

3. Attach the buzzer and install the battery.

Setting the buzzer

In order not to over-discharge or damage the battery, it is recommended to use a
voltage indicator (buzzer).

To configure the buzzer, connect it to the balance connector of your battery. By
pressing the button, change the minimum voltage on the cells. The optimal value
for the minimum voltage is 3.5-3.6 V.

Using FS-A8S

134

Flight readiness states

Before starting the flight, the aircraft must be in the Armed state.

Armed state – motors rotate according to throttle stick position, copter is
ready to fly.
Disarmed state – motors do not rotate, copter does not respond to throttle
stick.

Using FS-A8S

135

By default, the aircraft is in the Disarmed state and switches to it automatically if
you do not take off for a long time.

There are several ways to change the copter's state to Armed:

Using the stick – move the left stick down to the right and wait a couple of
seconds.

Using the toggle switch – the Armed / Disarmed states can be set to one of
the toggle switches. For more information on setting up, see the article on
flight modes.

With QGC – you can arm your drone programmatically. To do this, click on
the Disarmed label in the header and select another state.
In the user program – the copter can switch to Armed state if the
 auto_arm=True argument is specified in the navigation command, such as
 navigate , set_position , etc.

Kill switch

When the Kill Switch is activated, no control signals are sent to the motors and
the motors stop rotating. This function is used in extreme cases, for example, if
you lose control of the aircraft.

Be careful, Kill Switch does not put the copter into Disarmed state!

Before disabling the Kill Switch, make sure the throttle stick is its down position
and the aircraft is in Disarmed state. If the throttle stick is not in the lower position,
when the Kill Switch is turned off, a signal corresponding to the stick position will
be sent to the motors, which will lead your copter to jerk.

Next: Drone control exercises.

Using FS-A8S

136

Drone control exercises
The following are the recommended exercises for novice pilots. Repeat each
exercise as many times as necessary until you feel confident in it.

In case there is a person nearby who can control a copter, use trainer
mode.

The first flights are strongly recommended to be performed behind a
protective grid. In the absence of such, the flight area must be at least
6x6 m.

Turning on/off motors, changing flight
modes

For convenience, connect to the aircraft using QGC over Wi-Fi and turn on
the sound. This will allow you to monitor the change in flight modes. If you
cannot connect via Wi-Fi, connect via USB to check flight modes.

Be sure to set the flight mode to one of the toggle switches. To do this, switch the
toggle to different positions and make sure that the mode change.

It is recommended to configure Kill Switch. To check it, follow these steps:

Turn on Kill Switch, make sure QGC has a notification.
Put the aircraft in Armed state and then enable Kill Switch. Make sure the
motors stop. Then switch the Kill Switch to its original position. If the aircraft
haven't automatically entered the Disarmed state due to inactivity, the motors
will start rotating again.

Set the aircraft to Armed state on the flight zone only.

Make sure modes switching is assigned to toggle switch that is convenient for
you. Otherwise, change it according to the article on setting flight modes. Repeat
the above steps several times in order to remember which toggle switches are
responsible for what.

Working with throttle
The first step is to feel the responsiveness of the copter to the movement of the
throttle stick and learn how to control it. Each drone has slightly different power
reserves and therefore lifts off the ground at different stick positions.

For this exercise, only the throttle stick should be used. It is recommended not to
use the rest of the sticks during the exercise.

Using FS-A8S

137

The main tasks of the exercise:

1. Drift of the copter on the ground without taking off the ground.

Preflight checks

Do the following before takeoff:

1. Check the integrity of the aircraft and the propellers are clear to rotate.
2. Make sure the aircraft is with its back toward you.
3. Turn on the aircraft by connecting the battery.
4. Move back to a safe distance. It is recommended to maintain a minimum

distance of 4-5 m to the aircraft.
5. Make sure the aircraft is in Stabilized mode.

Do not try to lift the copter off the ground right away, find the lowest possible stick
position for the copter to start drifting on the ground. Failure to do so may result in
damage or injury.

If you lose control of the aircraft, you must immediately turn on Kill Switch.

Exercise №1. Slowly lift the throttle stick up until the aircraft starts to move. At
this point, it will begin to slowly drift on the ground. Leave the throttle stick in this
position and wait a couple of seconds, then move the throttle stick to its original
position to land the aircraft. After landing the aircraft, turn off the motors by
switching to Disarmed state. Repeat the exercise 5–10 times to get better feel for
the copter's throttle stick response.

Exercise №2. Slowly lift the throttle stick up until the aircraft starts to lift slightly
off the ground. Leave the throttle stick in this position and wait a couple of
seconds, then land the aircraft as in Exercise №1. Repeat the exercise 5–10
times.

Exercise №3. Raise the throttle stick until the aircraft starts to drift on the ground,
wait a second and continue increasing the throttle until the aircraft starts to lift off
the ground, wait a second and land the aircraft. To consolidate, repeat the
exercises 5–10 times, increasing the number of repetitions if necessary.

Working with roll and pitch
After mastering the throttle control of the copter, it is necessary to learn how to
control its horizontal position. The right stick on the remote control is responsible
for this.

Manipulating these axes is intuitive:

Stick tilted forward (up) - aircraft moves forward.
Stick tilted back (down) - aircraft moves backward.
Stick tilted to the right - aircraft moves to the right.
Stick tilted to the left - aircraft moves to the left.

Using FS-A8S

138

The more the stick is tilted to the side, the more the aircraft will tilt to the side and
the faster it moves.

The main tasks of the exercise:

1. Flying along the X axis, forward / backward.
2. Flying along the Y axis, left / right.
3. Stabilization of the copter in one place.
4. Flying in a square clockwise and counterclockwise.

Always stay behind the aircraft with the rear facing towards you, otherwise
you may lose control over it by mixing sides.

As with throttle control, perform the following steps before flying.

If the aircraft is spinning strongly around its axis, land it and recalibrate the
magnetometer and gyroscope.

Exercise №1. Similar to throttle exercises, raise the throttle stick until the aircraft
starts to drift on the ground or bounce a little, then release the throttle stick,
leaving it in that position, and raise the pitch stick, first up for a second, then
down. The copter will gradually move away from you and then towards you.
Repeat the exercise 5–10 times until you feel the copter's responsiveness to the
stick movement.

Exercise №2. Raise the throttle stick until the aircraft starts to drift, then leave it
and move the roll stick first to the right for a second, then to the left. The aircraft
will gradually move first to the right and then to the left. Repeat the exercise 5–10
times until you feel the copter's responsiveness to the stick movement.

Exercise №3. Raise the throttle stick until the aircraft starts to drift, then leave it.
Combine the first and second exercises and try to stabilize the aircraft at one
point, compensating for its drift with the stick. Hold the aircraft for 50–60 seconds.

Exercise №4. Raise the throttle stick until the aircraft starts to drift, then leave it.
When you feel the copter's responsiveness to stick changes, make a "square"
shape with a side of 1 m, first clockwise and then counterclockwise. Perform the
figures 2–3 times.

Air cushion and control in it
The concept of air cushion is very important for all flying vehicles. The air cushion
itself is a zone of increased pressure created by the air being forced through the
propellers. This area is characterized by turbulence and air currents affecting the
flight of the copter.

Pilots try to avoid flying in an air cushion, but there is a stable area at the
boundary where the aircraft can hover at minimum throttle. In this case, it feels
like the copter has "sat down" on an air cushion.

The main feature and advantage of such a flight is that the copter will not change
altitude with one throttle value.

Using FS-A8S

139

Main tasks:

1. Stabilization of the copter in one place.
2. Flying in a square.
3. Flying in a circle.

Similarly to the previous exercises, perform the following steps before take off.

Exercise №1. Raise the throttle stick until the copter flies over the air cushion and
is above it (height from floor ~ 25-30 cm, for Clover 4 copter). The aircraft should
not climb up or fall down, the flight altitude should stabilize. As in the previous
exercise, adjust the X and Y position of the aircraft using the roll and pitch sticks.
As a result, the copter should hover at one point with slight wiggle to the sides.
Hold the aircraft for 30–40 seconds.

Exercise №2. Raise the aircraft on the air cushion and stabilize it at one point.
Next, fly over a square with a side of 1 m, first clockwise, then counterclockwise.
Repeat the path 2–3 times in each direction.

Exercise №3. Raise the aircraft on the air cushion and stabilize it at one point.
Try to fly a circle with the copter around 1 m in diameter, clockwise and
counterclockwise. Repeat the path 2–3 times in each direction.

Working with yaw
In the visual control of multicopter devices, yaw does not play as important role as
with fixed wing vehicles, since the copter can move in any direction regardless of
where it is directed.

The term yaw refers to the rotation of the aircraft around the vertical axis.

Main tasks:

1. Rotate the copter, orienting the rear of the copter towards you.
2. Turning around the copter, orienting the rear part towards you.

It is recommended that you find plenty of free space for the exercises presented.

Similarly to previous exercises, perform preflight checks before takeoff.

Exercise №1. Raise the aircraft on the air cushion and stabilize it at one point.
Fly a circle around you with the copter, at a distance of 2–3 m, while rotating it so
that the back of the copter is always directed towards you. Do the exercise
clockwise and counterclockwise. Repeat the exercise 4–5 times.

Exercise №2. Raise the aircraft on the air cushion and stabilize it at one point.
Walk around the aircraft while turning it so that the rear is facing you. Walk around
the aircraft clockwise and counterclockwise. Repeat the exercise 4–5 times.

Additional exercises are much more difficult than usual and are not
required. Only proceed with them if you are already confidently flying the
copter.

Using FS-A8S

140

Additional exercise №1. Raise the aircraft on the air cushion and stabilize it at
one point. Face the aircraft with its front facing you and try to fly it backwards.

Additional exercise №2. Raise the aircraft on the air cushion and stabilize it at
one point. Fly so that the front of the aircraft is always facing the direction of the
aircraft.

Free flight
If you can complete each of the exercises described above, chances are you
already know how to freely take off and fly the aircraft. Some exercises will be
presented below to consolidate the acquired skills.

Exercises:

Flying in a vertical square.
Flying along the sides of the cube.
Flying in a vertical circle.
Flight of the eight.
Ascent of the copter in a spiral.

Strengthen the acquired skills as many times as necessary for you.

Using FS-A8S

141

Raspberry Pi
Raspberry Pi is a single-board computer that fits in the palm, created on the
basis of ARM mobile microprocessor. It features low energy consumption, and it
can even run on solar panels. A Raspberry Pi is included in the kits for
programmable quadcopters "Clover".

Technical specifications:

Weight is 45 grams.
Clock rate is 1.2 GHz.
Graphics core in the Broadcom BCM2837 processor.
RAM is 1 GB.
Four USB 2.0 ports.
An HDMI port.

Raspberry Pi is connected to the flight controller in the Clover kit and is used as a
companion computer. It can be used to connect to the drone over Wi-Fi, perform
autonomous flights, access peripherals and much more.

Next: Raspberry Pi image

Using FS-A8S

142

Raspberry Pi image
The RPi image for Clover contains all the necessary software for working with
Clover and programming autonomous flights. The Clover platform is based on
Raspbian OS and robotics framework ROS. The source code of the image builder
and all the additional packages is available on GitHub.

Usage
Starting from version v0.22, the image is based on ROS Noetic and using
Python 3. If you want to use ROS Melodic and Python 2, use version
v0.21.2.

1. Download the latest stable release of the image – download.
2. Download and install Etcher, the software for flashing images (available for

Windows/Linux/macOS).
3. Put the MicroSD-card into your computer (use an adapter if necessary).
4. Flash the downloaded image to the card using Etcher.
5. Put the card into the Raspberry Pi.

After flashing the image on the MicroSD-card, you can connect to the Clover over
Wi-Fi, use wireless connection in QGroundControl, gain access to the Raspberry
over SSH and use all the other features.

Next: Connecting over Wi-Fi.

https://www.raspberrypi.org/downloads/raspbian/
https://github.com/CopterExpress/clover
https://github.com/CopterExpress/clover/releases/download/v0.21.2/clover_v0.21.2.img.zip
https://github.com/CopterExpress/clover/releases
https://www.balena.io/etcher/

Using FS-A8S

143

Connecting to Clover via Wi-Fi
The following applies to image version 0.20 and up. See previous version
of the article for older images.

RPi image provides a pre-configured Wi-Fi access point with SSID clover-xxxx ,
where xxxx are four random numbers that are assigned when your Raspberry Pi
is run for the first time.

Connect to this Wi-Fi using the password cloverwifi .

To edit Wi-Fi settings, or to obtain more detailed information about the network
device on Raspberry Pi, read this article.

Web interface
After connecting to Clover Wi-Fi, open http://192.168.11.1 in you web browser. It
contains all the basic web tools of Clover: viewing image topics, web terminal
(Butterfly), and the full copy of this documentation.

https://github.com/CopterExpress/clover/blob/v0.19/docs/en/wifi.md
http://192.168.11.1/

Using FS-A8S

144

Next: Connecting Raspberry Pi to the flight controller.

Using FS-A8S

145

Connecting Raspberry Pi to the flight
controller
In order to program autonomous flights, work with Pixhawk or Pixracer over Wi-Fi,
use controller app and access other functions you need to connect your
Raspberry Pi to the flight controller.

USB connection
USB connection is the preferred way to connect to the flight controller.

1. Connect your FCU to the Raspberry Pi using a microUSB to USB cable.
2. Connect to the Raspberry Pi over SSH.
3. Make sure that the connection is working properly by running the following

command on the Raspberry Pi:

 rostopic echo /mavros/state

The connected field should have the True value.

You need to set the CBRK_USB_CHK parameter to 197848 for the USB
connection to work.

Using FS-A8S

146

UART connection
UART connection is another way for the Raspberry Pi and FCU to communicate.

If the pin marked GND is occupied, you can use any other ground pin (look at the
pinout for reference).

1. Connect the TELEM 2 port on the flight controller using a UART cable to the
Raspberry Pi pins following this instruction: the black cable (GND) to Ground,
the green cable (UART_RX) to GPIO14, the yellow cable (UART_TX) to
GPIO15. Do not connect the red cable (5V).

2. In PX4 of version v1.9.0 or higher, set parameter values: MAV_1_CONFIG to
TELEM 2, SER_TEL2_BAUND to 921600 8N1. In PX4 of version prior to v1.9.0
the parameter SYS_COMPANION should be set to Companion Link (921600 baud,
8N1) , to set it correctly use the old version of QGC v3.3.1.

3. Connect to the Raspberry Pi over SSH.
4. Check the presence of the parameters enable_uart=1 and dtoverlay=pi 3-

disable-bt in the file /boot/config.txt by running the following command
on the Raspberry Pi:

If the parameters in the file are different or missing, then edit the file and
restart the Raspberry Pi.

5. Change the connection type from usb to uart in the Clover' launch file
 ~/catkin_ws/src/clover/clover/launch/clover.launch :

 cat /boot/config.txt | grep -E "^enable_uart=.|^dtoverlay=pi3-disable-bt"

https://pinout.xyz/
https://github.com/mavlink/qgroundcontrol/issues/6905#issuecomment-464549610
https://github.com/mavlink/qgroundcontrol/releases/tag/v3.3.1

Using FS-A8S

147

 <arg name="fcu_conn" default="uart"/>

If you change the launch file, you need to restart the `clover' service:

 sudo systemctl restart clover

6. Make sure that the connection is working properly by running the following
command:

 rostopic echo -n1 /mavros/state

The connected field should have the True value.

Read more in the PX4 docs:
https://docs.px4.io/main/en/peripherals/serial_configuration.html.

Next: Using QGroundControl over Wi-Fi

https://docs.px4.io/main/en/peripherals/serial_configuration.html

Using FS-A8S

148

Using QGroundControl via Wi-Fi

You can monitor, control, calibrate and configure the flight controller of the
quadcopter using QGroundControl via Wi-Fi. This requires connecting to Wi-Fi of
the clover-xxxx network.

After that, in the Clover launch-file
 /home/pi/catkin_ws/src/clover/clover/launch/clover.launch , choose one of the
preconfigured bridge modes.

After editing the launch-file, restart the clover service:

sudo systemctl restart clover

TCP bridge
Change parameter gcs_bridge in the launch file:

<arg name="gcs_bridge" default="tcp"/>

Then in the QGroundControl program, choose Application Settings > Comm Links
> Add. Create a connection with the following settings:

Using FS-A8S

149

Then choose the created connection from the list of connections, and click
"Connect".

UDP bridge (with automated connection)
Change parameter gcs_bridge in the launch file:

<arg name="gcs_bridge" default="udp-b"/>

After opening the QGroundControl application, the connection should be
established automatically.

UDP bridge (without automated
connection)
Change parameter gcs_bridge in the launch file:

<arg name="gcs_bridge" default="udp-b"/>

Then in the QGroundControl program, choose Application Settings > Comm Links
> Add. Create a connection with the following settings:

Using FS-A8S

150

Then choose the created connection from the list of connections, and click
"Connect".

UDP broadcast bridge
The feature of the UDP broadcast bridge is the ability to view drone
telemetry simultaneously from multiple devices (e.g., a phone and a PC). It
is also well suited for devices networking using a router.

Change parameter gcs_bridge in the launch file:

<arg name="gcs_bridge" default="udp-b"/>

After opening the QGroundControl application, the connection should be
established automatically.

Next: Remote access using SSH

Using FS-A8S

151

SSH access to Raspberry Pi
RPi image is configured to be accessed via SSH for editing files, loading data and
running programs.

For the SSH access, it is necessary to connect to Raspberry Pi over Wi-Fi
(connection via an Ethernet cable is also possible).

In Linux or macOS, run the command prompt, and execute command:

ssh pi@192.168.11.1

Password: raspberry .

For SSH access from Windows, you may use PuTTY. You can also gain SSH
access from your smartphone using the Termius app.

To avoid entering the password each time you connect via SSH, see the
article on using SSH keys.

Read more: https://www.raspberrypi.org/documentation/remote-
access/ssh/README.md

Web access
Starting with version 0.11.4 of the image, access to the shell is also available via a
web browser (using Butterfly). To gain access, open web page
http://192.168.11.1, and select link Open web terminal:

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.termius.com/
https://www.raspberrypi.org/documentation/remote-access/ssh/README.md
https://github.com/paradoxxxzero/butterfly
http://192.168.11.1/

Using FS-A8S

152

Next: Command-line interface

Using FS-A8S

153

Command line interface
The Raspberry Pi OS, Raspbian, uses CLI as its primary user interface (which is
common for Linux-based operating systems). You can use a secure shell
connection to access the command line.

Basic commands
Double-tapping the Tab ↹ key autocompletes the command or its
argument. This is known as "tab completion".

Show the contents of the current directory:

ls

Change current (working) directory:

cd catkin_ws/src/clover/clover/launch

Go one directory level up:

cd ..

Print path to the current directory:

pwd

Go to the user's home directory:

Print contents of the file.py file:

cat file.py

Run file.py as a Python script:

python3 file.py

Reboot Raspberry Pi:

all three commands are equivalent, where the tilde character (~) is an abbrev
path entry to the home directory, and the $HOME variable stores this path
cd
cd ~
cd $HOME

Using FS-A8S

154

sudo reboot

You can terminate currently running (foreground) program by pressing Ctrl + C .

Read more about the Linux command line in the Raspberry Pi documentation:
https://www.raspberrypi.org/documentation/linux/usage/commands.md.

Editing files
You can use nano to edit files on the Raspberry Pi. It is one of the more user-
friendly console-based text editor.

1. Use the following command to edit or create a file:

nano path/to/file

For example:

nano ~/catkin_ws/src/clover/clover/launch/clover.launch

2. Edit the file.
3. Press Ctrl + X , Y , Enter to save your file and exit.
4. Restart the clover service if you've changed .launch files:

sudo systemctl restart clover

You may also use other editors like vim if you prefer.

Resetting changes
For resetting all the changes in Clover package related files (launch -files), use
git:

https://www.raspberrypi.org/documentation/linux/usage/commands.md

Using FS-A8S

155

cd ~/catkin_ws/src/clover
git checkout .
sudo systemctl restart clover

Using FS-A8S

156

Automatic check
The RPi image contains a tool for automatic checking the correctness of all the
settings and subsystems of the drone – selfcheck.py.

It is generally a good idea to perform this check before flight, especially before an
autonomous one.

In order to run it, enter the following command in the Raspberry Pi console:

rosrun clover selfcheck.py

Description of some checks:

FCU – checks for proper connection with the flight controller;
IMU – checks whether the data from from IMU is sane;
Local position – checks presence of local position data;
Velocity estimation – checks whether drone velocity estimation is
sane(autonomous flight is not to be performed if this check fails!);
Global position (GPS) — checks for presence of global position data (GPS
module is required for this check);
Camera — checks for proper operation of the Raspberry camera.
ArUco — checks whether ArUco detection is working
VPE — checks whether VPE data is published.
Rangefinder — checks whether rangefinder data is published.
RPi health – checks the onboard computer status.
CPU usage – checks the CPU load of the onboard computer.

Pay attention on the checks marked with WARN sign. If necessary, contact
Copter Express technical support.

tg://resolve?domain=COEXHelpdesk

Using FS-A8S

157

Viewing images from cameras
To view images from cameras (or other ROS topics), you can use rviz, rqt, or
watch them in a browser using web_video_server.

See read more about using rqt.

Viewing in a browser
To view a video-stream, you have to connect to Wi-Fi network of the Clover
(clover-xxxx), navigate to page http://192.168.11.1:8080/, and choose the topic.

If the image is transmitted too slow, you can speed it up by changing GET
parameter quality (from 1 to 100), which is responsible for video-stream
compression, for example:

http://192.168.11.1:8080/stream_viewer?
topic=/main_camera/image_raw&quality=1

At the URL above, a stream from the main camera will be available in the
minimum possible quality.

Parameters width , height , etc. re also available. Read more about
 web_video_server : http://wiki.ros.org/web_video_server.

Browse with rqt_image_view
To browse images with the rqt tools the user needs a computer with Ubuntu 20.04
and ROS Noetic.

Connect to the Clover Wi-Fi network an run rqt_image_view with its IP-address:

http://192.168.11.1:8080/
http://192.168.11.1:8080/stream_viewer?topic=/main_camera/image_raw&quality=1
http://wiki.ros.org/web_video_server
http://wiki.ros.org/noetic/Installation/Ubuntu

Using FS-A8S

158

ROS_MASTER_URI=http://192.168.11.1:11311 rqt_image_view

Choose a topic for browsing, for example /main_camera/image_raw :

To reduce network load and reduce latency, use a compressed version of the
topic – /main_camera/image_raw/compressed .

To change the compression settings use the rqt-plugin Dynamic Reconfigure:

Refer to more about rviz and rqt.

Using FS-A8S

159

Programming
The Clover platform allows a
Raspberry Pi computer to be used
for programming autonomous
flights. The flight program is
typically written using the Python
programming language. The
program may receive telemetry
data (which includes battery data,
attitude, position, and other
parameters) and send commands
like: fly to a point in space, set
attitude, set angular rates, and
others.

The platform utilizes the ROS framework, which allows the user program to
communicate with the Clover services that are running as a clover systemd
daemon. The MAVROS package is used to interact with the flight controller.

PX4 uses OFFBOARD mode for autonomous flights. The Clover API can be used
to transition the drone to this flight mode automatically. If you need to interrupt the
autonomous flight, use your flight mode stick on your RC controller to transition to
any other flight mode.

Positioning system
A drone has to use a positioning system to be able to hover still or to fly from point
to point. The system should compute the drone position and feed this data into
the flight controller. Clover allows using multiple positioning systems, such as
optical flow (requires a camera and a rangefinder), fiducial markers (requires a
camera and markers), GPS and others.

Optical flow

Optical flow is used to compute shifts between consecutive frames and to use this
data to compute the drone shifting in space.

Read more in the Optical Flow article.

ArUco markers

Fiducial markers allow the drone to compute its position relative to these markers.
This data may then be transferred to the flight controller.

Read more about ArUco markers in our articles about them.

GPS (outdoor flight)

Using FS-A8S

160

GPS allows you to specify global Earth coordinates (latitude and longitude). The
 navigate_global function takes these as parameters instead of the usual
cartesian coordinates.

Read more in the GPS connection article.

Autonomous flight
For studying Python programming language, see tutorial.

After you've configured your positioning system, you can start writing programs
for autonomous flights. Use the SSH connection to the Raspberry Pi to run your
scripts.

Before the first flight it's recommended to check the Clover's configuration with
selfcheck.py utility:

rosrun clover selfcheck.py

In order to run a Python script use the python3 command:

python3 flight.py

Below is a complete flight program that performs a takeoff, flies forward and
lands:

import rospy
from clover import srv
from std_srvs.srv import Trigger

rospy.init_node('flight')

get_telemetry = rospy.ServiceProxy('get_telemetry', srv.GetTelemetry)
navigate = rospy.ServiceProxy('navigate', srv.Navigate)
navigate_global = rospy.ServiceProxy('navigate_global', srv.NavigateGlobal)
set_position = rospy.ServiceProxy('set_position', srv.SetPosition)
set_velocity = rospy.ServiceProxy('set_velocity', srv.SetVelocity)
set_attitude = rospy.ServiceProxy('set_attitude', srv.SetAttitude)
set_rates = rospy.ServiceProxy('set_rates', srv.SetRates)
land = rospy.ServiceProxy('land', Trigger)

Takeoff and hover 1 m above the ground
navigate(x=0, y=0, z=1, frame_id='body', auto_arm=True)

Wait for 3 seconds
rospy.sleep(3)

Fly forward 1 m
navigate(x=1, y=0, z=0, frame_id='body')

Wait for 3 seconds
rospy.sleep(3)

Perform landing
land()

https://www.learnpython.org/en/Welcome

Using FS-A8S

161

The navigate function call is not blocking; that is, the program will
continue executing the next commands before the drone arrives at the set
point. Look at the navigate_wait snippet for a blocking function.

Note that only the first navigate call has its auto_arm parameter set to True .
This parameter arms the drone and transitions it to the OFFBOARD flight mode.

The frame_id parameter specifies which frame of reference will be used for the
target point:

 body is rigidly bound to the drone body;
 navigate_target has its origin at the last target point for navigate ;
 map is the drone's local frame;
 aruco_map is bound to the ArUco marker map;
 aruco_N is bound to the marker with ID=N.

Read more in the coordinate systems article.

You can also use the "Autonomous flight" article as an API reference.

Clover supports blocks-based programming as well.

Additional periphery
The Clover platform also exposes APIs for interacting with other peripherals.
Read more in the following articles:

LED strip;
laser rangefinder;
GPIO;
ultrasonic rangefinder;
camera.

Using FS-A8S

162

Camera setup
The following applies to image version 0.20 and up. See previous version
of the article for older images.

Computer vision modules (like ArUco markers and Optical Flow) require adjusting
the camera focus and set up camera position and orientation relative to the drone
body. Optional camera calibration can improve their quality of performance.

Focusing the camera lens
In order to focus the camera lens, do the following:

1. Open the live camera stream in your browser using web_video_server.
2. Rotate the lens to adjust the image. Make sure the objects that are 2-3 m

from the camera are in focus.

Unfocused image Focused image

Setting the camera position
Position and orientation of the main camera is set in the
 ~/catkin_ws/src/clover/clover/launch/main_camera.launch file:

https://github.com/CopterExpress/clover/blob/v0.19/docs/en/camera_frame.md

Using FS-A8S

163

To set the orientation, define:

direction the camera lens points direction_z : down or up ;
direction the camera cable points direction_y : backward or forward .

Examples

Camera faces downward, cable goes backward

<arg name="direction_z" default="down"/>
<arg name="direction_y" default="backward"/>

Camera faces downward, cable goes forward

<arg name="direction_z" default="down"/>
<arg name="direction_y" default="forward"/>

<arg name="direction_z" default="down"/> <!-- direction the camera points: down
<arg name="direction_y" default="backward"/> <!-- direction the camera cable po

Using FS-A8S

164

Camera faces upward, cable goes backward

<arg name="direction_z" default="up"/>
<arg name="direction_y" default="backward"/>

Using FS-A8S

165

Camera faces upward, cable goes forward

<arg name="direction_z" default="up"/>
<arg name="direction_y" default="forward"/>

Using FS-A8S

166

The selfcheck.py utility will describe your current camera setup in a
human-readable fashion. Be sure to check whether this description
corresponds to your actual camera position.

Custom camera position

It's possible to set arbitrary camera position and orientation. In order to do that
uncomment node, marked as Template for custom camera orientation :

This line describes how the camera is positioned relative to the drone body.
Technically, it creates a static transform between the base_link frame (which
corresponds to the flight controller housing) and the camera
(main_camera_optical) in the following format:

shift_x shift_y shift_z yaw_angle pitch_angle roll_angle

Camera frame (that is, frame of reference) is aligned as follows:

<!-- Template for custom camera orientation -->
<!-- Camera position and orientation are represented by base_link -> main_camer
<!-- static_transform_publisher arguments: x y z yaw pitch roll frame_id child_
<node pkg="tf2_ros" type="static_transform_publisher" name="main_camera_frame"

Using FS-A8S

167

x points to the right side of the image;
y points to the bottom of the image;
z points away from the camera matrix plane.

Shifts are set in meters, angles are in radians. You can check the transform for
correctness using rviz.

Calibration
To improve the quality of computer vision related algorithms it's recommended to
perform camera calibration, which is described in the appropriate article.

Using FS-A8S

168

ArUco markers
ArUco markers are commonly used for vision-based position estimation.

Examples of ArUco markers:

Use the most matte paper for printing visual markers. Glossy paper may
glitter in the light, severely deteriorating the quality of recognition.

For rapid generation of markers for printing, you may use an online tool:
http://chev.me/arucogen/.

Clover Raspberry Pi image contains a pre-installed aruco_pose ROS package,
which can be used for marker detection.

Modes of operation
There are several preconfigured modes of operation for ArUco markers on the
Clover drone:

single marker detection and navigation;
map-based navigation.

Additional documentation for the aruco_pose ROS package is available on
GitHub.

https://docs.opencv.org/3.2.0/d5/dae/tutorial_aruco_detection.html
http://chev.me/arucogen/
https://github.com/CopterExpress/clover/blob/master/aruco_pose/README.md

Using FS-A8S

169

ArUco marker detection
The following applies to image versions 0.22 and up. Older documentation
is still available for for version 0.20.

Marker detection requires the camera module to be correctly plugged in
and configured.

 aruco_detect module detects ArUco markers and publishes their positions in
ROS topics and as TF frames.

This is useful in conjunction with other positioning systems, such as GPS, Optical
Flow, PX4Flow, visual odometry, ultrasonic (Marvelmind) or UWB-based (Pozyx)
localization.

Using this module along with map-based navigation is also possible.

Setup
Set the aruco argument in ~/catkin_ws/src/clover/clover/launch/clover.launch
to true :

<arg name="aruco" default="true"/>

For enabling detection set the aruco_detect argument in
 ~/catkin_ws/src/clover/clover/launch/aruco.launch to true :

<arg name="aruco_detect" default="true"/>

For the module to work correctly the following arguments should also be set:

 placement argument should be set to:

 floor if all markers are on the ground;
 ceiling if all markers are on the ceiling;
an empty string otherwise.

You may specify length for each marker individually by using the length_override
parameter of the node aruco_detect :

<arg name="placement" default="floor"/> <!-- markers' placement, explained belo
<arg name="length" default="0.33"/> <!-- length of a single marker, in mete

<param name="length_override/3" value="0.1"/> <!-- marker with id=3 has a si
<param name="length_override/17" value="0.25"/> <!-- marker with id=17 has a s

https://github.com/CopterExpress/clover/blob/v0.20/docs/en/aruco_marker.md
https://marvelmind.com/
https://www.pozyx.io/

Using FS-A8S

170

Coordinate system
Each marker has its own coordinate systems. It is aligned as follows:

the x axis points to the right side of the marker;
the y axis points to the top side of the marker;
the z axis points outwards from the plane of the marker

Working with detected markers
Navigation within the marker-based TF frames is possible with simple_offboard
node.

Sample code to fly to a point 1 metre above marker with id 5:

navigate(frame_id='aruco_5', x=0, y=0, z=1)

Sample code to fly to a point 1 metre to the left and 2 metres above marker with id
7:

navigate(frame_id='aruco_7', x=-1, y=0, z=2)

Note that if the required marker isn't detected for 0.5 seconds after the navigate
command, the command will be ignored.

These frames may also be used in other services that accept TF frames (like
 get_telemetry). The following code will get the drone's position relative to the
marker with id 3:

telem = get_telemetry(frame_id='aruco_3')

Note that if the required marker isn't detected for 0.5 seconds, the telem.x ,
 telem.y , telem.z , telem.yaw fields will contain NaN .

Using FS-A8S

171

Handling marker detection in Python
The following snippet shows how to read the aruco_detect/markers topic in
Python:

Each message contains the marker ID, its corner points on the image and its
position relative to the camera.

Suggested reading: map-based navigation

import rospy
from aruco_pose.msg import MarkerArray
rospy.init_node('my_node')

...

def markers_callback(msg):
 print('Detected markers:'):
 for marker in msg.markers:
 print('Marker: %s' % marker)

Create a Subscription object. Each time a message is posted in aruco_detect/m
rospy.Subscriber('aruco_detect/markers', MarkerArray, markers_callback)

...

rospy.spin()

Using FS-A8S

172

Map-based navigation with ArUco
markers

The following applies to image versions 0.22 and up. Older documentation
is still available for for version 0.20.

Marker detection requires the camera module to be correctly plugged in
and configured.

We recommend using our custom PX4 firmware.

 aruco_map module detects whole ArUco-based maps. Map-based navigation is
possible using vision position estimate (VPE).

Configuration
Set the aruco argument in ~/catkin_ws/src/clover/clover/launch/clover.launch
to true :

<arg name="aruco" default="true"/>

In order to enable map detection set aruco_map and aruco_detect arguments to
 true in ~/catkin_ws/src/clover/clover/launch/aruco.launch :

<arg name="aruco_detect" default="true"/>
<arg name="aruco_map" default="true"/>

Set aruco_vpe to true to publish detected camera position to the flight
controller as VPE data:

<arg name="aruco_vpe" default="true"/>

Marker map definition
Map is defined in a text file; each line has the following format:

marker_id marker_size x y z z_angle y_angle x_angle

 N_angle is the angle of rotation along the N axis in radians.

Map files are located at the ~/catkin_ws/src/clover/aruco_pose/map directory.
Map file name is defined in the map argument:

<arg name="map" default="map.txt"/>

https://github.com/CopterExpress/clover/blob/v0.20/docs/en/aruco_map.md

Using FS-A8S

173

Some map examples are provided in the directory.

Grid maps may be generated using the genmap.py script:

rosrun aruco_pose genmap.py length x y dist_x dist_y first -o test_map.txt

 length is the size of each marker, x is the marker count along the x axis, y is
the marker count along the y axis, dist_x is the distance between the centers of
adjacent markers along the x axis, dist_y is the distance between the centers of
the y axis, first is the ID of the first marker (top left marker, unless --bottom-
left is specified), test_map.txt is the name of the generated map file. The
optional --bottom-left parameter changes the numbering of markers, making
the bottom left marker the first one.

Usage example:

rosrun aruco_pose genmap.py 0.33 2 4 1 1 0 -o test_map.txt

Additional information on the utility can be obtained using -h key: rosrun
aruco_pose genmap.py -h .

Checking the map

The currently active map is posted in the /aruco_map/image ROS topic. It can be
viewed using web_video_server by opening the following link:
http://192.168.11.1:8080/snapshot?topic=/aruco_map/image

https://github.com/CopterExpress/clover/tree/master/aruco_pose/map
http://192.168.11.1:8080/snapshot?topic=/aruco_map/image

Using FS-A8S

174

Current estimated pose (relative to the detected map) is published in the
 aruco_map/pose ROS topic. If the VPE is disabled, the aruco_map TF frame is
created; otherwise, the aruco_map_detected frame is created instead.
Visualization for the current map is also posted in the aruco_map/visualization
ROS topic; it may be visualized in rviz.

An easy to understand detected map visualization is posted in the
 aruco_map/debug ROS topic (live view is available on
http://192.168.11.1:8080/stream_viewer?topic=/aruco_map/debug):

http://192.168.11.1:8080/stream_viewer?topic=/aruco_map/debug

Using FS-A8S

175

Coordinate system
The marker map adheres to the ROS coordinate system convention, using the
ENU coordinate system:

the x axis points to the right side of the map;
the y axis points to the top side of the map;
the z axis points outwards from the plane of the marker

http://www.ros.org/reps/rep-0103.html

Using FS-A8S

176

VPE setup
In order to enable vision position estimation you should use the following PX4
parameters.

If you're using LPE (SYS_MC_EST_GROUP parameter is set to
 local_position_estimator,attitude_estimator_q):

 LPE_FUSION should have vision position and land detector flags set. We
suggest unsetting the baro flag for indoor flights.
External heading (yaw) weight: ATT_W_EXT_HDG = 0.5.
External heading (yaw) mode: ATT_EXT_HDG_M = 1 (Vision).
Vision position standard deviations: LPE_VIS_XY = 0.1 m, LPE_VIS_Z = 0.1
m.
 LPE_VIS_DELAY = 0 sec.

If you're using EKF2 estimator (SYS_MC_EST_GROUP parameter is set to ekf2),
make sure the following is set:

 EKF2_AID_MASK should have vision position fusion and vision yaw fusion
flags set.
Vision angle observations noise: EKF2_EVA_NOISE = 0.1 rad.
Vision position observations noise: EKF2_EVP_NOISE = 0.1 m.
 EKF2_EV_DELAY = 0.

We recommend using LPE for marker-based navigation.

You may use the selfcheck.py utility to check your settings.

In order to use LPE with the Pixhawk v1 hardware you should download the
 px4fmu-v2_lpe.px4 firmware

Flight
If the setup is done correctly, the drone will hold its position in POSCTL and
 OFFBOARD flight modes automatically.

You will also be able to use navigate , set_position and set_velocity ROS
services for autonomous flights. In order to fly to a specific coordinate within the
ArUco map you should use the aruco_map frame:

Using a specific marker frame

Takeoff should be performed in the "body" frame; "aruco_map" frame will appea
navigate(x=0, y=0, z=2, frame_id='body', speed=0.5, auto_arm=True) # Takeoff an

time.sleep(5)

Fly to the (2, 2) point on the marker field while being 2 metres above it
navigate(x=2, y=2, z=2, speed=1, frame_id='aruco_map')

Using FS-A8S

177

Starting with the image version 0.18, the drone also can fly relative to a marker in
the map, even if it is not currently visible. Like with single-marker navigation, this
works by setting the frame_id parameter to aruco_ID , where ID is the desired
marker number.

The following code will move the drone to the point 1 meter above the center of
marker 5:

navigate(frame_id='aruco_5', x=0, y=0, z=1)

Additional settings
If the drone's position is not stable when VPE is used, try increasing the P term in
the velocity PID regulator: increase the MPC_XY_VEL_P and MPC_Z_VEL_P
parameters.

If the drone's altitude is not stable, try increasing the MPC_Z_VEL_P parameter and
adjusting hover thrust via MPC_THR_HOVER .

Placing markers on the ceiling

In order to navigate using markers on the ceiling, mount the onboard camera so
that it points up and adjust the camera frame accordingly.

You should also set the placement parameter to ceiling in
 ~/catkin_ws/src/clover/clover/launch/aruco.launch :

<arg name="placement" default="ceiling"/>

Using FS-A8S

178

With such a camera orientation the Optical Flow technology cannot work, so it
should be disabled in the ~/catkin_ws/src/clover/clover/launch/clover.launch
file:

<arg name="optical_flow" default="false"/>

Such setup will flip the aruco_map frame (making its z axis point downward).
Thus, in order to fly 2 metres below ceiling, the z argument for the navigate
service should be set to 2:

navigate(x=1, y=1.1, z=2, speed=0.5, frame_id='aruco_map')

Using FS-A8S

179

Use of Optical Flow
Running the "Optical Flow" function offers the possibility of POSCTL flight mode,
and autonomous flight operating on a camera pointed downwards that detects
changes of ground texture.

Enabling
For Optical Flow to work it's required that the laser rangefinder is
connected and configured.

Enable Optical Flow in the file
 ~/catkin_ws/src/clover/clover/launch/clover.launch :

<arg name="optical_flow" default="true"/>

Optical Flow publishes data in /mavros/px4flow/raw/send topic. In the topic
 /optical_flow/debug is also published a visualization, that can be viewed with
web_video_server.

Correct connection and setup of the camera module is needed for proper
functioning.

Setup of the flight controller
Suggested parameters are applied automatically in our custom PX4
firmware.

When using EKF2 (parameter SYS_MC_EST_GROUP = ekf2):

 EKF2_AID_MASK – flag 'use optical flow' is on.
 EKF2_OF_DELAY – 0.
 EKF2_OF_QMIN – 10.
 EKF2_OF_N_MIN – 0.05.
 EKF2_OF_N_MAX - 0.2.
 SENS_FLOW_ROT – No rotation.
 SENS_FLOW_MAXHGT – 4.0 (for the rangefinder VL53L1X)
 SENS_FLOW_MINHGT – 0.0 (for the rangefinder VL53L1X)
Optional: EKF2_HGT_MODE – range sensor (cf. rangefinder setup).

When using LPE (parameter SYS_MC_EST_GROUP = local_position_estimator,
attitude_estimator_q):

 LPE_FUSION – flags 'fuse optical flow' and 'flow gyro compensation' are on.
 LPE_FLW_QMIN – 10.
 LPE_FLW_SCALE – 1.0.

Using FS-A8S

180

 LPE_FLW_R – 0.2.
 LPE_FLW_RR – 0.0.
 SENS_FLOW_ROT – No rotation.
 SENS_FLOW_MAXHGT – 4.0 (for the rangefinder VL53L1X)
 SENS_FLOW_MINHGT – 0.0 (for the rangefinder VL53L1X)
Optional: LPE_FUSION – flag 'pub agl as lpos down' is on (see rangefinder
setup.

The selfcheck.py utility will help you verify that all settings are correctly set.

POSCTL flight
Setup POSCTL to be one of PX4 flight modes and then select POSCTL.

Autonomous flight
The module simple_offboard enables autonomous flight.

Example of take off and leveling at 1.5m above the ground:

navigate(z=1.5, frame_id='body', auto_arm=True)

Flying forward for 1m:

navigate(x=1.5, frame_id='body')

Navigation using ArUco-markers and [using VPE] are available when using
Optical Flow.

Additional settings
If the copter has an unstable position, try to increase the P coefficient of speed
PID controller - parameters are MPC_XY_VEL_P and MPC_Z_VEL_P .

If the copter has an unstable height, try increasing MPC_Z_VEL_P coefficient or
getting better hover throttle - MPC_THR_HOVER .

If the copter is consistently yawing, try:

recalibrate gyroscopes;
recalibrate magnetometer;
different values for EKF2_MAG_TYPE parameter, that indicates how data from
the magnetometer is used in EKF2;
changing values of EKF2_MAG_NOISE , EKF2_GYR_NOISE , EKF2_GYR_B_NOISE
parameters.

For better results perform gyro calibration directly before taking off, using
appropriate snippet.

Using FS-A8S

181

If the copter's height is deviating, try:

increasing the value of MPC_Z_VEL_P coefficient;
change the value of MPC_THR_HOVER parameter;
add MPC_ALT_MODE = 2 (Terrain following).

When using Optical Flow, the maximal horizontal speed is further limited. This is
an indirect influence of the parameter SENS_FLOW_MAXR (maximal reliable "angular
speed" of the optical flow). In normal flight mode, control loops will be adjusted so
that Optical Flow values do not exceed 50% of this parameter.

Errors
If errors like EKF INTERNAL CHECKS occur, try to restart EKF2. To do so, enter in the
MAVLink-console:

ekf2 stop
ekf2 start

Using FS-A8S

182

Autonomous flight
The following applies to image versions 0.24 and up. Older documentation
is available for for version 0.23.

The simple_offboard module of the clover package is intended for simplified
programming of the autonomous drone flight (OFFBOARD flight mode). It allows
setting the desired flight tasks, and automatically transforms coordinates between
frames.

 simple_offboard is a high level system for interacting with the flight controller. For
a more low level system, see mavros.

Main services are get_telemetry (receive telemetry data), navigate (fly to a
given point along a straight line), navigate_global (fly to a point specified as
latitude and longitude along a straight line), land (switch to landing mode).

Python usage
You need to create proxies for services before calling them. Use the following
template for your programs:

import rospy
from clover import srv
from std_srvs.srv import Trigger

rospy.init_node('flight') # 'flight' is name of your ROS node

get_telemetry = rospy.ServiceProxy('get_telemetry', srv.GetTelemetry)
navigate = rospy.ServiceProxy('navigate', srv.Navigate)
navigate_global = rospy.ServiceProxy('navigate_global', srv.NavigateGlobal)
set_altitude = rospy.ServiceProxy('set_altitude', srv.SetAltitude)
set_yaw = rospy.ServiceProxy('set_yaw', srv.SetYaw)
set_yaw_rate = rospy.ServiceProxy('set_yaw_rate', srv.SetYawRate)
set_position = rospy.ServiceProxy('set_position', srv.SetPosition)
set_velocity = rospy.ServiceProxy('set_velocity', srv.SetVelocity)
set_attitude = rospy.ServiceProxy('set_attitude', srv.SetAttitude)
set_rates = rospy.ServiceProxy('set_rates', srv.SetRates)
land = rospy.ServiceProxy('land', Trigger)

Unused proxy functions may be removed from the code.

API description
Omitted numeric parameters are set to 0.

get_telemetry

Obtains complete telemetry of the drone.

https://github.com/CopterExpress/clover/blob/v0.23/docs/en/simple_offboard.md

Using FS-A8S

183

Parameters:

 frame_id – frame for values x , y , z , vx , vy , vz . Example: map ,
 body , aruco_map . Default value: map .

Response format:

 frame_id — frame;
 connected – whether there is a connection to FCU;
 armed - drone arming state (armed if true);
 mode – current flight mode;
 x, y, z — local position of the drone (m);
 lat, lon – drone latitude and longitude (degrees), requires GPS module;
 alt – altitude in the global coordinate system (according to WGS-84
standard, not AMSL!), requires GPS module;
 vx, vy, vz – drone velocity (m/s);
 roll – roll angle (radians);
 pitch – pitch angle (radians);
 yaw — yaw angle (radians);
 roll_rate – angular roll velocity (rad/s);
 pitch_rate — angular pitch velocity (rad/s);
 yaw_rate – angular yaw velocity (rad/s);
 voltage – total battery voltage (V);
 cell_voltage – battery cell voltage (V).

Fields that are unavailable for any reason will contain the NaN value.

Displaying drone coordinates x , y and z in the local system of coordinates:

telemetry = get_telemetry()
print(telemetry.x, telemetry.y, telemetry.z)

Displaying drone altitude relative to the ArUco map:

telemetry = get_telemetry(frame_id='aruco_map')
print(telemetry.z)

Checking global position availability:

import math
if not math.isnan(get_telemetry().lat):
 print('Global position is available')
else:
 print('No global position')

Output of current telemetry (command line):

rosservice call /get_telemetry "{frame_id: ''}"

navigate

https://ru.wikipedia.org/wiki/WGS_84

Using FS-A8S

184

Fly to the designated point in a straight line.

Parameters:

 x , y , z — coordinates (m);
 yaw — yaw angle (radians);
 speed – flight speed (setpoint speed) (m/s);
 auto_arm – switch the drone to OFFBOARD mode and arm automatically (the
drone will take off);
 frame_id – coordinate system for values x , y , z and yaw . Example:
 map , body , aruco_map . Default value: map .

If you don't want to change your current yaw set the yaw parameter to
 NaN (angular velocity by default is 0).

Ascending to the altitude of 1.5 m with the climb rate of 0.5 m/s:

navigate(x=0, y=0, z=1.5, speed=0.5, frame_id='body', auto_arm=True)

Flying in a straight line to point 5:0 (altitude 2) in the local system of coordinates
at the speed of 0.8 m/s (yaw is set to 0):

navigate(x=5, y=0, z=3, speed=0.8)

Flying to point 5:0 without changing the yaw angle:

navigate(x=5, y=0, z=3, speed=0.8, yaw=float('nan'))

Flying 3 m to the right from the drone:

navigate(x=0, y=-3, z=0, speed=1, frame_id='body')

Flying 2 m to the left from the last navigation target:

navigate(x=0, y=2, z=0, speed=1, frame_id='navigate_target')

Turn 90 degrees clockwise:

navigate(yaw=math.radians(-90), frame_id='body')

Flying to point 3:2 (with the altitude of 2 m) in the ArUco map coordinate system
with the speed of 1 m/s:

navigate(x=3, y=2, z=2, speed=1, frame_id='aruco_map')

Ascending to the altitude of 2 m (command line):

rosservice call /navigate "{x: 0.0, y: 0.0, z: 2, yaw: 0.0, speed: 0.5, frame_i

Using FS-A8S

185

Consider using the navigate_target frame instead of body for missions
that primarily use relative movements forward/back/left/right. This negates
inaccuracies in relative point calculations.

navigate_global

Flying in a straight line to a point in the global coordinate system
(latitude/longitude).

Parameters:

 lat , lon — latitude and longitude (degrees);
 z — altitude (m);
 yaw — yaw angle (radians);
 speed – flight speed (setpoint speed) (m/s);
 auto_arm – switch the drone to OFFBOARD and arm automatically (the drone
will take off);
 frame_id – coordinate system for z and yaw (Default value: map).

If you don't want to change your current yaw set the yaw parameter to
 NaN (angular velocity by default is 0).

Flying to a global point at the speed of 5 m/s, while maintaining current altitude
(yaw will be set to 0, the drone will face East):

navigate_global(lat=55.707033, lon=37.725010, z=0, speed=5, frame_id='body')

Flying to a global point without changing the yaw angle:

Flying to a global point (command line):

set_altitude

Change the desired flight altitude. The service is used to set the altitude and its
coordinate system independently, after calling navigate or set_position .

Parameters:

 z – flight altitude (m);
 frame_id – coordinate system for computing the altitude.

Set the desired altitude to 2 m relative to the floor:

set_altitude(z=2, frame_id='terrain')

navigate_global(lat=55.707033, lon=37.725010, z=0, speed=5, yaw=float('nan'), f

rosservice call /navigate_global "{lat: 55.707033, lon: 37.725010, z: 0.0, yaw

Using FS-A8S

186

Set the desired altitude to 1 m relative to the ArUco map:

set_altitude(z=1, frame_id='aruco_map')

set_yaw

Change the desired yaw angle (and its coordinate system), keeping the previous
command in effect.

Parameters:

 yaw — yaw angle (radians);
 frame_id – coordinate system for computing the yaw.

Rotate by 90 degrees clockwise (the previous command continues):

set_yaw(yaw=math.radians(-90), frame_id='body')

Set the desired yaw angle to zero relative to the ArUco map:

set_yaw(yaw=0, frame_id='aruco_map')

Stop yaw rotation (caused by set_yaw_rate call):

set_yaw(yaw=float('nan'))

set_yaw_rate

The the desired angular yaw velocity, keeping the previous command in effect.

Parameters:

 yaw_rate – angular yaw velocity (rad/s);

The positive direction of yaw_rate rotation (when viewed from the top) is
counterclockwise.

Start yaw rotation at 0.5 rad/s (the previous command continues):

set_yaw_rate(yaw_rate=0.5)

set_position

Set the setpoint for position and yaw. This service may be used to specify the
continuous flow of target points, for example, for flying along complex trajectories
(circular, arcuate, etc.).

Use the navigate higher-level service to fly to a point in a straight line or to
perform takeoff.

Parameters:

Using FS-A8S

187

 x , y , z — point coordinates (m);
 yaw — yaw angle (radians);
 auto_arm – switch the drone to OFFBOARD and arm automatically (the drone
will take off);
 frame_id – coordinate system for x , y , z and yaw parameters (Default
value: map).

Hovering on the spot:

set_position(frame_id='body')

Assigning the target point 3 m above the current position:

set_position(x=0, y=0, z=3, frame_id='body')

Assigning the target point 1 m ahead of the current position:

set_position(x=1, y=0, z=0, frame_id='body')

set_velocity

Set speed and yaw setpoints.

 vx , vy , vz – flight speed (m/s);
 yaw — yaw angle (radians);
 auto_arm – switch the drone to OFFBOARD and arm automatically (the drone
will take off);
 frame_id – coordinate system for vx , vy , vz and yaw (Default value:
 map).

Parameter frame_id specifies only the orientation of the resulting velocity
vector, but not its length.

Flying forward (relative to the drone) at the speed of 1 m/s:

set_velocity(vx=1, vy=0.0, vz=0, frame_id='body')

set_attitude

Set roll, pitch, yaw and throttle level (similar to the STABILIZED mode). This
service may be used for lower level control of the drone behavior, or controlling
the drone when no reliable data on its position is available.

Parameters:

 roll , pitch , yaw – requested roll, pitch, and yaw angle (radians);
 thrust — throttle level, ranges from 0 (no throttle, propellers are stopped) to
1 (full throttle).
 auto_arm – switch the drone to OFFBOARD mode and arm automatically (the
drone will take off);

Using FS-A8S

188

 frame_id – coordinate system for yaw (Default value: map).

set_rates

Set roll, pitch, and yaw rates and the throttle level (similar to the ACRO mode).
This is the lowest drone control level (excluding direct control of motor rotation
speed). This service may be used to automatically perform aerobatic tricks (e.g.,
flips).

Parameters:

 roll_rate , pitch_rate , yaw_rate – pitch, roll, and yaw rates (rad/s);
 thrust — throttle level, ranges from 0 (no throttle, propellers are stopped) to
1 (full throttle).
 auto_arm – switch the drone to OFFBOARD and arm automatically (the drone
will take off);

The positive direction of yaw_rate rotation (when viewed from the top) is
counterclockwise, pitch_rate rotation is forward, roll_rate rotation is to the
left.

land

Switch the drone to landing mode (AUTO.LAND or similar).

Set the COM_DISARM_LAND PX4 parameter to a value greater than 0 to
enable automatic disarm after landing.

Landing the drone:

res = land()

if res.success:
 print('drone is landing')

Landing the drone (command line):

rosservice call /land "{}"

In recent PX4 versions, the vehicle will be switched out of LAND mode to
manual mode, if the remote control sticks are moved significantly.

release

If it's necessary to pause sending setpoint messages, use the
 simple_offboard/release service:

release = rospy.ServiceProxy('simple_offboard/release', Trigger)

release()

Using FS-A8S

189

Additional materials
ArUco-based position estimation and navigation.
Program samples and snippets.

Using FS-A8S

190

Coordinate systems (frames)

Main frames in the clover package:

 map has its origin at the flight controller initialization point and may be
considered stationary. It is shown as a white grid on the image above;
 base_link is rigidly bound to the drone. It is shown by the simplified drone
model on the image above;
 body is bound to the drone, but its Z axis points up regardless of the drone's
pitch and roll. It is shown by the red, blue and green lines in the illustration;
 navigate_target is bound to the current navigation target (as set by the
navigate service);
 terrain is bound to the floor at the current drone position (see the
set_altitude service);
 setpoint is current position setpoint;
 main_camera_optical is the coordinate system, linked to the main camera;

Additional frames become available when ArUco positioning system is active:

 aruco_map is bound to the currently active ArUco map;
 aruco_N is bound to the marker with ID=N.

Frames that are bound to the drone are oriented according to the ROS
convention: the X axis points forward, Y to the left, and Z up.

3D visualization of the coordinate systems can be viewed using rviz.

tf2
Read more at http://wiki.ros.org/tf2

http://www.ros.org/reps/rep-0103.html
http://wiki.ros.org/tf2

Using FS-A8S

191

tf2 ROS package is used extensively in the Clover platform. tf2 is a set of libraries
for C++, Python and other programming languages that are used to work with the
frames. Internally, ROS nodes publish TransformStamped messages to /tf topic
with transforms between frames at certain points in time.

The simple_offboard node can be used to request the drone position in an
arbitrary frame by setting the frame_id argument appropriately in a call to
 get_telemetry service.

tf2 can be used from Python to transform coordinates (for objects like
PoseStamped and PointStamped) from one frame to another

Using FS-A8S

192

Code examples

Python

#

Function to fly to a point and wait for copter's arrival:

This function utilizes navigate_target frame for computing the distance to the
target.

Using the function for flying to the point x=3, y=2, z=1 in marker's map:

navigate_wait(x=3, y=2, z=1, frame_id='aruco_map')

This function can be used for taking off as well:

navigate_wait(z=1, frame_id='body', auto_arm=True)

#

Land and wait until the copter lands:

land()
while get_telemetry().armed:
 rospy.sleep(0.2)

Usage:

land_wait()

#

Wait for copter's arrival to the navigate target:

import math

def navigate_wait(x=0, y=0, z=0, yaw=float('nan'), speed=0.5, frame_id='', auto
 navigate(x=x, y=y, z=z, yaw=yaw, speed=speed, frame_id=frame_id, auto_arm=a

 while not rospy.is_shutdown():
 telem = get_telemetry(frame_id='navigate_target')
 if math.sqrt(telem.x ** 2 + telem.y ** 2 + telem.z ** 2) < tolerance:
 break
 rospy.sleep(0.2)

Using FS-A8S

193

#

Calculate the distance between two points (important: the points are to be in the
same coordinate system):

import math

def get_distance(x1, y1, z1, x2, y2, z2):
 return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2 + (z1 - z2) ** 2)

#

Approximation of distance (in meters) between two global coordinates
(latitude/longitude):

import math

def get_distance_global(lat1, lon1, lat2, lon2):
 return math.hypot(lat1 - lat2, lon1 - lon2) * 1.113195e5

#

Disarm the drone (propellers will stop, the drone will fall down):

Declaring a proxy:
from mavros_msgs.srv import CommandBool
arming = rospy.ServiceProxy('mavros/cmd/arming', CommandBool)

...

arming(False) # disarm

#

Transform the position (PoseStamped) from one coordinate system to another
using tf2:

import math

def wait_arrival(tolerance=0.2):
 while not rospy.is_shutdown():
 telem = get_telemetry(frame_id='navigate_target')
 if math.sqrt(telem.x ** 2 + telem.y ** 2 + telem.z ** 2) < tolerance:
 break
 rospy.sleep(0.2)

http://wiki.ros.org/tf2

Using FS-A8S

194

#

Determine whether the copter is turned upside-down:

PI_2 = math.pi / 2
telem = get_telemetry()

flipped = abs(telem.roll) > PI_2 or abs(telem.pitch) > PI_2

#

Calculate the copter horizontal angle:

#

Fly along a circular path:

import tf2_ros
import tf2_geometry_msgs
from geometry_msgs.msg import PoseStamped

tf_buffer = tf2_ros.Buffer()
tf_listener = tf2_ros.TransformListener(tf_buffer)

...

Create PoseStamped object (or get it from a topic):
pose = PoseStamped()
pose.header.frame_id = 'map' # coordinate frame, in which the position is speci
pose.header.stamp = rospy.get_rostime() # the time for which the position is sp
pose.pose.position.x = 1
pose.pose.position.y = 2
pose.pose.position.z = 3
pose.pose.orientation.w = 1

frame_id = 'base_link' # target coordinate frame
transform_timeout = rospy.Duration(0.2) # timeout for transformation

Transform the position from the old frame to the new one:
new_pose = tf_buffer.transform(pose, frame_id, transform_timeout)

PI_2 = math.pi / 2
telem = get_telemetry()

flipped = not -PI_2 <= telem.roll <= PI_2 or not -PI_2 <= telem.pitch <= PI_2
angle_to_horizon = math.atan(math.hypot(math.tan(telem.roll), math.tan(telem.pi
if flipped:
 angle_to_horizon = math.pi - angle_to_horizon

Using FS-A8S

195

RADIUS = 0.6 # m
SPEED = 0.3 # rad / s

start = get_telemetry()
start_stamp = rospy.get_rostime()

r = rospy.Rate(10)

while not rospy.is_shutdown():
 angle = (rospy.get_rostime() - start_stamp).to_sec() * SPEED
 x = start.x + math.sin(angle) * RADIUS
 y = start.y + math.cos(angle) * RADIUS
 set_position(x=x, y=y, z=start.z)

 r.sleep()

#

Repeat an action at a frequency of 10 Hz:

r = rospy.Rate(10)
while not rospy.is_shutdown():
 # Do anything
 r.sleep()

#

An example of subscription to a topic from MAVROS:

Information about MAVROS topics is available at the link.

#

Send an arbitrary MAVLink message to the copter:

from geometry_msgs.msg import PoseStamped, TwistStamped
from sensor_msgs.msg import BatteryState
from mavros_msgs.msg import RCIn

def pose_update(pose):
 # Processing new data of copter's position
 pass

rospy.Subscriber('mavros/local_position/pose', PoseStamped, pose_update)
rospy.Subscriber('mavros/local_position/velocity', TwistStamped, velocity_updat
rospy.Subscriber('mavros/battery', BatteryState, battery_update)
rospy.Subscriber('mavros/rc/in', RCIn, rc_callback)

rospy.spin()

Using FS-A8S

196

#

Subscribe to all MAVLink messages from the flight controller and decode them:

#

React to the drone's mode switching (may be used for starting an autonomous
flight, see example):

from mavros_msgs.msg import RCIn

Called when new data is received from the transmitter
def rc_callback(data):
 # React on toggling the mode of the transmitter
 if data.channels[5] < 1100:
 # ...
 pass
 elif data.channels[5] > 1900:
 # ...
 pass
 else:
 # ...
 pass

Creating a subscriber for the topic with the data from the transmitter
rospy.Subscriber('mavros/rc/in', RCIn, rc_callback)

rospy.spin()

from mavros_msgs.msg import Mavlink
from mavros import mavlink
from pymavlink import mavutil

mavlink_pub = rospy.Publisher('mavlink/to', Mavlink, queue_size=1)

Sending a HEARTBEAT message:
msg = mavutil.mavlink.MAVLink_heartbeat_message(mavutil.mavlink.MAV_TYPE_GCS, 0
msg.pack(mavutil.mavlink.MAVLink('', 2, 1))
ros_msg = mavlink.convert_to_rosmsg(msg)

mavlink_pub.publish(ros_msg)

from mavros_msgs.msg import Mavlink
from mavros import mavlink
from pymavlink import mavutil

link = mavutil.mavlink.MAVLink('', 255, 1)

def mavlink_cb(msg):
 mav_msg = link.decode(mavlink.convert_to_bytes(msg))
 print('msgid =', msg.msgid, mav_msg) # print message id and parsed message

mavlink_sub = rospy.Subscriber('mavlink/from', Mavlink, mavlink_cb)

rospy.spin()

https://gist.github.com/okalachev/b709f04522d2f9af97e835baedeb806b

Using FS-A8S

197

#

Change the flight mode to arbitrary one:

from mavros_msgs.srv import SetMode

set_mode = rospy.ServiceProxy('mavros/set_mode', SetMode)

...

set_mode(custom_mode='STABILIZED')

#

Flip:

Requires the special PX4 firmware for Clover. Before running a flip, take all
necessary safety precautions.

#

Perform gyro calibration:

import math

PI_2 = math.pi / 2

def flip():
 start = get_telemetry() # memorize starting position

 set_rates(thrust=1) # bump up
 rospy.sleep(0.2)

 set_rates(pitch_rate=30, thrust=0.2) # pitch flip
 # set_rates(roll_rate=30, thrust=0.2) # roll flip

 while True:
 telem = get_telemetry()
 flipped = abs(telem.roll) > PI_2 or abs(telem.pitch) > PI_2
 if flipped:
 break

 rospy.loginfo('finish flip')
 set_position(x=start.x, y=start.y, z=start.z, yaw=start.yaw) # finish flip

print(navigate(z=2, speed=1, frame_id='body', auto_arm=True)) # take off
rospy.sleep(10)

rospy.loginfo('flip')
flip()

Using FS-A8S

198

In process of calibration the drone should not be moved.

#

Enable and disable ArUco markers recognition dynamically (for example, for
saving CPU resources):

import rospy
import dynamic_reconfigure.client

rospy.init_node('flight')
aruco_client = dynamic_reconfigure.client.Client('aruco_detect')

Turn markers recognition off
aruco_client.update_configuration({'enabled': False})

rospy.sleep(5)

Turn markers recognition on
aruco_client.update_configuration({'enabled': True})

#

Enable and disable Optical Flow dynamically:

from pymavlink import mavutil
from mavros_msgs.srv import CommandLong
from mavros_msgs.msg import State

send_command = rospy.ServiceProxy('mavros/cmd/command', CommandLong)

def calibrate_gyro():
 rospy.loginfo('Calibrate gyro')
 if not send_command(command=mavutil.mavlink.MAV_CMD_PREFLIGHT_CALIBRATION,
 return False

 calibrating = False
 while not rospy.is_shutdown():
 state = rospy.wait_for_message('mavros/state', State)
 if state.system_status == mavutil.mavlink.MAV_STATE_CALIBRATING or stat
 calibrating = True
 elif calibrating and state.system_status == mavutil.mavlink.MAV_STATE_S
 rospy.loginfo('Calibrating finished')
 return True

calibrate_gyro()

Using FS-A8S

199

import rospy
import dynamic_reconfigure.client

rospy.init_node('flight')
flow_client = dynamic_reconfigure.client.Client('optical_flow')

Turn Optical Flow off
flow_client.update_configuration({'enabled': False})

rospy.sleep(5)

Turn Optical Flow on
flow_client.update_configuration({'enabled': True})

#

For RPi image version > 0.23.

Change the used ArUco markers map file dynamically:

#

Wait for global position to appear (finishing GPS receiver initialization):

import math

while not rospy.is_shutdown():
 if math.isfinite(get_telemetry().lat):
 break
 rospy.sleep(0.2)

#

Read flight controller's parameter:

from mavros_msgs.srv import ParamGet
from mavros_msgs.msg import ParamValue

param_get = rospy.ServiceProxy('mavros/param/get', ParamGet)

Read parameter of type INT
value = param_get(param_id='COM_FLTMODE1').value.integer

Read parameter of type FLOAT
value = param_get(param_id='MPC_Z_P').value.float

import rospy
import dynamic_reconfigure.client

rospy.init_node('flight')
map_client = dynamic_reconfigure.client.Client('aruco_map')

map_client.update_configuration({'map': '/home/pi/catkin_ws/src/clover/aruco_po

Using FS-A8S

200

#

Set flight controller's parameter:

from mavros_msgs.srv import ParamSet
from mavros_msgs.msg import ParamValue

param_set = rospy.ServiceProxy('mavros/param/set', ParamSet)

Set parameter of type INT:
param_set(param_id='COM_FLTMODE1', value=ParamValue(integer=8))

Set parameter of type FLOAT:
param_set(param_id='MPC_Z_P', value=ParamValue(real=1.5))

#

Check, if the code is running inside a Gazebo simulation:

is_simulation = rospy.get_param('/use_sim_time', False)

#

You can move a physical object (link) in Gazebo (as well as change its velocity)
using the gazebo/set_link_state service (of the type SetLinkState). For
example, if you add a cube to the world (link unit_box::link), you can move it to
the point (1, 2, 3):

Simple object animation in Gazebo can be implemented using actors.

import rospy
from geometry_msgs.msg import Point, Pose, Quaternion
from gazebo_msgs.srv import SetLinkState
from gazebo_msgs.msg import LinkState

rospy.init_node('flight')

set_link_state = rospy.ServiceProxy('gazebo/set_link_state', SetLinkState)

Change link's position
set_link_state(LinkState(link_name='unit_box::link', pose=Pose(position=Point(1

http://docs.ros.org/en/api/gazebo_msgs/html/srv/SetLinkState.html
http://classic.gazebosim.org/tutorials?tut=actor&cat=build_robot

Using FS-A8S

201

Working with a laser rangefinder
Documentation for the image, versions, starting with 0.20. For older
versions refer to documentation for version 0.19.

VL53L1X Rangefinder
The rangefinder model recommended for Clover is STM VL53L1X. This
rangefinder can measure distances from 0 to 4 m while ensuring high
measurement accuracy.

The image for Raspberry Pi contains pre-installed corresponding ROS driver.

Connecting to Raspberry Pi

Before using the rangefinder, please remove the protective film from it.

Connect the rangefinder to the 3V, GND, SCL and SDA pins via the I²C interface:

https://github.com/CopterExpress/clover/blob/v0.19/docs/en/laser.md

Using FS-A8S

202

If the pin marked GND is occupied, you can use any other ground pin (look at the
pinout for reference).

You can connect several peripheral devices via the I²C interface
simultaneously. Use a parallel connection for that.

Enabling the rangefinder

Connect via SSH and edit file
 ~/catkin_ws/src/clover/clover/launch/clover.launch so that the VL53L1X driver
is enabled:

<arg name="rangefinder_vl53l1x" default="true"/>

https://pinout.xyz/

Using FS-A8S

203

By default, the rangefinder driver sends the data to Pixhawk via the
 /rangefinder/range topic. To view data from the topic, use the following
command:

rostopic echo /rangefinder/range

PX4 settings

We recommend using our custom PX4 firmware for Clover for best laser
rangefinder support.

PX4 should be properly configured to use the rangefinder data.

Set the following parameters when EKF2 is used (SYS_MC_EST_GROUP = ekf2):

 EKF2_HGT_MODE = 2 (Range sensor) – for flights over horizontal floor;
 EKF2_RNG_AID = 1 (Range aid enabled) – in other cases.

Set the following parameters when LPE is used (SYS_MC_EST_GROUP =
 local_position_estimator, attitude_estimator_q):

The "pub agl as lpos down" flag should be set in the LPE_FUSION parameter –
for flights over horizontal floor.

Receiving data in Python

In order to receive data from the topic, create a subscriber:

import rospy
from sensor_msgs.msg import Range

rospy.init_node('flight')

def range_callback(msg):
 # Process data from the rangefinder
 print('Rangefinder distance:', msg.range)

rospy.Subscriber('rangefinder/range', Range, range_callback)

rospy.spin()

Also it's possible to read one rangefinder measurement at a time:

from sensor_msgs.msg import Range

...

dist = rospy.wait_for_message('rangefinder/range', Range).range

Data visualization

You may use rqt_multiplot tool to plot rangefinder data.

Using FS-A8S

204

rviz may be used for data visualization. To do this, add a topic of the
 sensor_msgs/Range type to visualization:

Read more about rviz and rqt.

Using FS-A8S

205

Working with a LED strip
Documentation for the image versions, starting with 0.21. For older
versions refer to documentation for version 0.20.

Clover drone kits contain addressable LED strips based on ws281x drivers. Each
LED may be set to any one of 16 million possible colors (each color is encoded by
a 24-bit number). This allows making the Clover flight more spectacular, as well
as show flight modes, display stages of current user program, and notify the pilot
of other events.

Our Raspberry Pi image contains preinstalled modules for interfacing with the
LED strip. They allow the user to:

manage LED strip effects and animations (high-level control);
control individual LED colors (low-level control);
configure the strip to display flight events.

LED strip can consume a lot of power! Powering it from a Raspberry Pi may
overload the computer's power circuitry. Consider using a separate BEC as
a power source.

High-level control
1. Connect the +5v and GND leads of your LED to a power source and the DIN

(data in) lead to GPIO21. Consult the assembly instructions for details.
2. Enable LED strip support in

 ~/catkin_ws/src/clover/clover/launch/clover.launch :

 <arg name="led" default="true"/>

https://github.com/CopterExpress/clover/blob/v0.20/docs/en/leds.md

Using FS-A8S

206

3. Configure the ws281x parameters in
 ~/catkin_ws/src/clover/clover/launch/led.launch . Change the number of
addressable LEDs and the GPIO pin used for control to match your
configuration:

High-level interface allows changing current effect (or animation) on the strip. It is
exposed as the /led/set_effect service. It has the following arguments:

 effect is the name of requested effect.
 r , g , b are RGB components of effect color. Each component is an
integer in a 0 to 255 range.

Currently available effects are:

 fill (or an empty string) fills the whole strip with the requested color;
 blink turns the strip on and off, setting it to the requested color;
 blink_fast is the same, but faster;
 fade fades smoothly to the requested color;
 wipe fills the strip with the requested color one LED at a time;
 flash blinks twice and returns to the previous effect;
 rainbow creates a rainbow-like shifting effect;
 rainbow_fill cycles the strip through rainbow colors, filling the whole strip
with the same color.

Python example:

You can also set colors from your Bash shell:

 <arg name="led_count" default="58"/> <!-- Number of LEDs in the strip --
 <arg name="gpio_pin" default="21"/> <!-- GPIO data pin -->

import rospy
from clover.srv import SetLEDEffect

rospy.init_node('flight')

set_effect = rospy.ServiceProxy('led/set_effect', SetLEDEffect) # define proxy

set_effect(r=255, g=0, b=0) # fill strip with red color
rospy.sleep(2)

set_effect(r=0, g=100, b=0) # fill strip with green color
rospy.sleep(2)

set_effect(effect='fade', r=0, g=0, b=255) # fade to blue color
rospy.sleep(2)

set_effect(effect='flash', r=255, g=0, b=0) # flash twice with red color
rospy.sleep(5)

set_effect(effect='blink', r=255, g=255, b=255) # blink with white color
rospy.sleep(5)

set_effect(effect='rainbow') # show rainbow

https://en.wikipedia.org/wiki/RGB

Using FS-A8S

207

rosservice call /led/set_effect "{effect: 'fade', r: 0, g: 0, b: 255}"

rosservice call /led/set_effect "{effect: 'rainbow'}"

Configuring event visualizations
It is possible to display current flight controller status and notify the user about
some events with the LED strip. This is configured in the
 ~/catkin_ws/src/clover/clover/launch/led.launch file in the events effects table
section. Here is a sample configuration:

startup: { r: 255, g: 255, b: 255 }
connected: { effect: rainbow }
disconnected: { effect: blink, r: 255, g: 50, b: 50 }
<!-- ... -->

The left part is one of the possible events that the strip reacts to. The right part
contains the effect description that you want to execute for this event.

Here is the list of supported events:

Event Description Default
effect

 startup Clover system startup White

 connected Successful connection to flight
controller Rainbow

 disconnected Connection to flight controller lost Red blink

 armed Transition to Armed state

 disarmed Transition to Disarmed state

 acro Acro mode Orange

 stabilized Stabilized mode Green

 altctl Altitude mode Yellow

 posctl Position mode Blue

 offboard Offboard mode Violet

 rattitude ,
 mission , rtl ,
 land

Corresponding mode

 error
Error in one of ROS nodes or in the
flight controller (ERROR message
in /rosout)

Red flash

 low_battery Low battery (threshold is set in the
 threshold parameter) Red fast blink

Using FS-A8S

208

You need to calibrate the power sensor for the low_battery event to work
properly.

In order to disable LED strip notifications set led_notify argument in
 ~/catkin_ws/src/clover/clover/launch/led.launch to false :

<arg name="led_notify" default="false"/>

Low-level control
You can use the /led/set_leds ROS service to control individual LEDs. It
accepts an array of LED indices and desired colors.

Python example:

You can also use this service from the your Bash shell:

rosservice call /led/set_leds "leds:
- index: 0
 r: 50
 g: 100
 b: 200"

Current LED strip state is published in the /led/state ROS topic. You can view
the contents of this topic from your Bash shell:

rostopic echo /led/state

Using the same topic you can get the configured number os LEDs, using Python:

import rospy
from led_msgs.srv import SetLEDs
from led_msgs.msg import LEDStateArray, LEDState

rospy.init_node('flight')

set_leds = rospy.ServiceProxy('led/set_leds', SetLEDs) # define proxy to ROS s

switch LEDs number 0, 1 and 2 to red, green and blue color:
set_leds([LEDState(0, 255, 0, 0), LEDState(1, 0, 255, 0), LEDState(2, 0, 0, 255

led_count = len(rospy.wait_for_message('led/state', LEDStateArray, timeout=10)

Using FS-A8S

209

Working with GPIO
A GPIO (General-Purpose Input/Output) pin is a programmable digital signal pin
on a circuit board or a microcontroller that may act as an input or an output.
Raspberry Pi has a set of easily accessible GPIO pins, some of which have
hardware PWM.

Use the pinout for figuring out, which Raspberry Pi's pins support GPIO and
PWM.

The pigpio library for interfacing with the GPIO pins is already preinstalled on
the RPi image. To interact with this library, run the appropriate daemon:

sudo systemctl start pigpiod.service

To enable automatic launch of the daemon, run:

sudo systemctl enable pigpiod.service

 pigpiod may interfere with LED strip if configured improperly. Make sure
that the strip is connected to GPIO21. On image versions lower than 0.17
change the service start string in /lib/systemd/system/pigpiod.service to
 ExecStart=/usr/bin/pigpiod -l -t 0 -x 0x0FFF3FF0 .

Example of working with the library:

import time
import pigpio

initializing connection to pigpiod
pi = pigpio.pi()

set pin 11 mode for output
pi.set_mode(11, pigpio.OUTPUT)

set signal of pin 11 to high
pi.write(11, 1)

time.sleep(2)

set signal on pin 11 to low
pi.write(11, 0)

...

setting pin 12 mode for input
pi.set_mode(12, pigpio.INPUT)

read the state of pin 12
level = pi.read(12)

To find out the pins' numbers, consult the Raspberry Pi pinout.

https://pinout.xyz/
http://abyz.me.uk/rpi/pigpio
https://pinout.xyz/

Using FS-A8S

210

Connecting servos
Servo motors are typically controlled with PWM signal. Extreme positions of
servos are reached with signal widths approximately equal to 1000 and 2000 µs.
Values for a specific servo can be determined experimentally.

Connect the signal wire of the servo to one of GPIO-pins of the Raspberry. To
control a servo connected to the pin 13 use a code like this:

import time
import pigpio

pi = pigpio.pi()

set mode of pin 13 to output
pi.set_mode(13, pigpio.OUTPUT)

set pin 13 to output PWM signal 1000 us
pi.set_servo_pulsewidth(13, 1000)

time.sleep(2)

set pin 13 to output PWM signal 2000 us
pi.set_servo_pulsewidth(13, 2000)

Connecting an electromagnet

To connect an electromagnet use a field-effect transistor (MOSFET). Connect the
MOSFET to one of GPIO-pins of the Raspberry Pi. To control the magnet
connected to the pin 15 use a code like this:

Using FS-A8S

211

import time
import pigpio

pi = pigpio.pi()

set mode of pin 15 for output
pi.set_mode(15, pigpio.OUTPUT)

enable the magnet
pi.write(15, 1)

time.sleep(2)

disable the magnet
pi.write(15, 0)

A more comprehensive description of the Raspberry Pi GPIO pins and
additional examples of circuits are available at the Embedded Linux wiki.

https://elinux.org/RPi_Low-level_peripherals
https://elinux.org/RPi_GPIO_Interface_Circuits
https://elinux.org/RPi_Hub

Using FS-A8S

212

Working with the ultrasonic distance
sensor
Ultrasonic distance sensor ("sonar") is a distance sensor based on the principle of
measuring the time of a sound wave (about 40 kHz) propagation to the obstacle
and back. The sonar can measure the distance up to 1.5 – 3 m with the accuracy
of several centimeters.

HC-SR04 distance sensor

Installation
The distance sensor is attached to the body using double-sided tape. For
obtaining acceptable results, the use of vibro-insulation is required. A piece of PU
foam may be used for vibro-insulation.

Connection

Connect HC-SR04 to Raspberry Pi according to the connection diagram. Use 1.0
and 2.2 kΩ resistors and any free GPIO pins, e.g., 23 and 24:

Using FS-A8S

213

Instead of a 2.2 kΩ resistor, you can use two 1 kΩ resistors connected in
series.

There are several interchangeable pins GND and VCC 5V on Raspberry Pi.
Use the [pinout] (https://pinout.xyz) to find them.

Reading the data

To read the data from distance sensor HC-SR04 library for working with GPIO is
used – pigpio . This library is pre-installed in the Clover image, starting with
version v0.14. For older versions of the image, use an installation guide.

To work with pigpio , start appropriate daemon:

sudo systemctl start pigpiod.service

https://pinout.xyz/
http://abyz.me.uk/rpi/pigpio/index.html
http://abyz.me.uk/rpi/pigpio/download.html

Using FS-A8S

214

You can also enable pigpiod auto launch on system startup:

sudo systemctl enable pigpiod.service

Thus, it becomes possible to interact with the pigpiod daemon from Python:

import pigpio
pi = pigpio.pi()

See detailed description of Python API in pigpio documentation.

An example of the code for reading data from HC-SR04:

import time
import threading
import pigpio

TRIG = 23 # pin connected to the Trig pin of the sonar
ECHO = 24 # pin connected to the Echo pin of the sonar

pi = pigpio.pi()
done = threading.Event()

def rise(gpio, level, tick):
 global high
 high = tick

def fall(gpio, level, tick):
 global low
 low = tick - high
 done.set()

def read_distance():
 global low
 done.clear()
 pi.gpio_trigger(TRIG, 50, 1)
 if done.wait(timeout=5):
 return low / 58.0 / 100.0

pi.set_mode(TRIG, pigpio.OUTPUT)
pi.set_mode(ECHO, pigpio.INPUT)
pi.callback(ECHO, pigpio.RISING_EDGE, rise)
pi.callback(ECHO, pigpio.FALLING_EDGE, fall)

while True:
 # Reading the distance:
 print(read_distance())

Filtering the data

To filter (smooth out) the data and delete outliers, Kalman filter or a simple median
filter can be used. An example of median filtering implementation:

http://abyz.me.uk/rpi/pigpio/python.html
https://en.wikipedia.org/wiki/Outlier
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Median_filter

Using FS-A8S

215

An example of charts of initial and filtered data:

The source code of the ROS-node used for building the chart can be found on
Gist.

RCW-0001 distance sensor

The RCW-0001 distance sensor is compatible with distance sensor HC-SR04.
Use the instruction above to connect and work with it.

Flight
An example of a flight program with the use of simple_offboard, which makes the
copter fly forward until the connected ultrasonic distance sensor detects an
obstacle:

import collections
import numpy

...

history = collections.deque(maxlen=10) # 10 - number of samples for averaging

def read_distance_filtered():
 history.append(read_distance())
 return numpy.median(history)

while True:
 print(read_distance_filtered())

https://gist.github.com/okalachev/feb2d7235f5c9636802c3cda43add253

Using FS-A8S

216

set_velocity(vx=0.5, frame_id='body', auto_arm=True) # flying forward at the ve

while True:
 if read_distance_filtered() < 1:
 # if the obstacle is closer than 1 m, hanging on the spot
 set_position(x=0, y=0, z=0, frame_id='body')
 rospy.sleep(0.1)

Using FS-A8S

217

Working with the camera
The following applies to the image version 0.24, which is not yet released.
Older documentation is still available for for version 0.23.

Make sure the camera is enabled in the
 ~/catkin_ws/src/clover/clover/launch/clover.launch file:

<arg name="main_camera" default="true"/>

Also make sure that position and orientation of the camera is correct.

The clover service must be restarted after the launch-file has been edited:

sudo systemctl restart clover

You may use rqt or web_video_server to view the camera stream.

Troubleshooting
If the camera stream is missing, try using the raspistill utility to check whether
the camera works.

First, stop the clover service:

sudo systemctl stop clover

Then use raspistill to capture an image from the camera:

raspistill -o test.jpg

If it doesn't work, check the camera cable connections and the cable itself.
Replace the cable if it is damaged. Also, make sure the camera screws don't
touch any components on the camera board.

Camera parameters
Some camera parameters, such as image size, FPS cap, and exposure, may be
configured in the main_camera.launch file. The list of supported parameters can
be found in the cv_camera repository.

Additionally you can specify an arbitrary capture parameter using its OpenCV
code. For example, add the following parameters to the camera node to set
exposition manually:

https://github.com/CopterExpress/clover/releases/tag/v0.24
https://github.com/CopterExpress/clover/blob/f78a03ec8943b596d5a99b893188a159d5319888/docs/en/camera.md
https://www.raspberrypi.org/documentation/usage/camera/raspicam/raspistill.md
https://github.com/OTL/cv_camera#parameters
https://docs.opencv.org/3.3.1/d4/d15/group__videoio__flags__base.html

Using FS-A8S

218

Computer vision
The SD card image comes with a preinstalled OpenCV library, which is commonly
used for various computer vision-related tasks. Additional libraries for converting
from ROS messages to OpenCV images and back are preinstalled as well.

Python

An example of creating a subscriber for a topic with an image from the main
camera for processing with OpenCV:

import rospy
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
from clover import long_callback

rospy.init_node('cv')
bridge = CvBridge()

@long_callback
def image_callback(data):
 img = bridge.imgmsg_to_cv2(data, 'bgr8') # OpenCV image
 # Do any image processing with cv2...

image_sub = rospy.Subscriber('main_camera/image_raw', Image, image_callback)

rospy.spin()

Image processing may take significant time to finish. This can cause an
issue in rospy library, which would lead to processing stale camera frames.
To solve this problem you need to use long_callback decorator from
 clover library, as in the example above.

Limiting CPU usage

When using the main_camera/image_raw topic, the script will process the maximum
number of frames from the camera, actively utilizing the CPU (up to 100%). In
tasks, where processing each camera frame is not critical, you can use the topic,
where the frames are published at rate 5 Hz: main_camera/image_raw_throttled :

Publishing images

<param name="property_0_code" value="21"/> <!-- property code 21 is CAP_PROP_AU
<param name="property_0_value" value="0.25"/> <!-- property values are normaliz
<param name="cv_cap_prop_exposure" value="0.3"/> <!-- set exposure to 30% of ma

image_sub = rospy.Subscriber('main_camera/image_raw_throttled', Image, image_ca

https://opencv.org/
https://github.com/ros/ros_comm/issues/1901

Using FS-A8S

219

To debug image processing, you can publish a separate topic with the processed
image:

image_pub = rospy.Publisher('~debug', Image)

Publishing the processed image:

image_pub.publish(bridge.cv2_to_imgmsg(img, 'bgr8'))

The published images can be viewed using web_video_server or rqt.

Retrieving one frame

It's possibly to retrieve one camera frame at a time. This method works slower
than normal topic subscribing and should not be used when it's necessary to
process camera images continuously.

Examples

Working with QR codes

For high-speed recognition and positioning, it is better to use ArUco
markers.

To program actions of the copter for the detection of QR codes you can use the
pyZBar. This lib is installed in the last image for Raspberry Pi.

QR codes recognition in Python:

import rospy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge

rospy.init_node('cv')
bridge = CvBridge()

...

Retrieve a frame:
img = bridge.imgmsg_to_cv2(rospy.wait_for_message('main_camera/image_raw', Imag

https://en.wikipedia.org/wiki/QR_code
https://pypi.org/project/pyzbar/

Using FS-A8S

220

See other computer vision examples in the ~/examples directory of the RPi
image.

Video recording
To record a video you can use video_recorder node from image_view package:

rosrun image_view video_recorder image:=/main_camera/image_raw

The video file will be saved to a file output.avi . The image argument contains
the name of the topic to record.

import rospy
from pyzbar import pyzbar
import cv2
from cv_bridge import CvBridge
from sensor_msgs.msg import Image
from clover import long_callback

rospy.init_node('cv')
bridge = CvBridge()

@long_callback
def image_callback(msg):
 img = bridge.imgmsg_to_cv2(msg, 'bgr8')
 barcodes = pyzbar.decode(img)
 for barcode in barcodes:
 b_data = barcode.data.decode('utf-8')
 b_type = barcode.type
 (x, y, w, h) = barcode.rect
 xc = x + w/2
 yc = y + h/2
 print('Found {} with data {} with center at x={}, y={}'.format(b_type,

image_sub = rospy.Subscriber('main_camera/image_raw_throttled', Image, image_ca

rospy.spin()

http://wiki.ros.org/image_view#image_view.2Fdiamondback.video_recorder

Using FS-A8S

221

Using rviz and rqt

The rviz tool allows real-time visualization of all components of the robotic system
—the system of coordinates, moving parts, sensors, camera images — on the 3D
stage.

rqt is a set of GUI for analyzing and controlling ROS systems. For example,
 rqt_image_view allows viewing topics with images, rqt_multiplot allows plot
charts by the values in topics, etc.

To use rviz and rqt, a PC running Ubuntu Linux (or a virtual machine such as
Parallels Desktop Lite or VirtualBox) is required.

You can use the preconfigured virtual machine image with ROS and Clover
toolkit.

Install package ros-noetic-desktop-full or ros-noetic-desktop using the
installation documentation.

Start rviz
To start the Clover state visualization in real time, connect to it via Wi-Fi (clover-
xxxx) and run rviz, specifying an appropriate ROS_MASTER_URI:

ROS_MASTER_URI=http://192.168.11.1:11311 rviz

In case of using a virtual machine for using rviz and other tools it might be
necessary to change its network configuration to bridge mode (see details
for VMware).

Using rviz

http://wiki.ros.org/rviz
http://wiki.ros.org/rqt
https://itunes.apple.com/ru/app/parallels-desktop-lite/id1085114709?mt=12
https://www.virtualbox.org/
http://wiki.ros.org/noetic/Installation/Ubuntu
https://docs.vmware.com/en/VMware-Workstation-Player-for-Windows/16.0/com.vmware.player.win.using.doc/GUID-826323AD-D014-475D-8909-DFA73B5A3A57.html

Using FS-A8S

222

Visualization of the copter position

It is recommended to set the map frame as a reference frame. To visualize the
copter, add visualization markers from topic /vehicle_markers . To visualize the
camera of the copter, add visualization markers from topic
 /main_camera/camera_markers .

The result of copter and camera visualization is shown below:

Visualization of the environment

You can view a picture with augmented reality from the topic of the main camera
 /main_camera/image_raw .

Axis or Grid configured to frame aruco_map will visualize the location on the map
of ArUco marks.

jsk_rviz_plugins

It is also recommended to install additional useful plugins for rviz jsk_rviz_plugins.
This kit allows visualizing topics like TwistStamped (velocity) CameraInfo ,
 PolygonArray , and many more. To install, use command:

sudo apt-get install ros-melodic-jsk-visualization

Starting the rqt toolkit

https://jsk-visualization.readthedocs.io/en/latest/jsk_rviz_plugins/index.html

Using FS-A8S

223

To start rqt for monitoring Clover status, use command:

ROS_MASTER_URI=http://192.168.11.1:11311 rqt

An example of starting a specific plugin (rqt_image_view):

ROS_MASTER_URI=http://192.168.11.1:11311 rqt_image_view

Brief description of useful rqt plugins:

 rqt_image_view – viewing images from topics like sensor_msgs/Image ;
 rqt_multiplot – Building charts from the data from of arbitrary topics
(installation: sudo apt-get install ros-melodic-rqt-multiplot);
Bag – working with Bag-files.

http://wiki.ros.org/rosbag

Using FS-A8S

224

Software autorun
In the image version 0.20 clever package and service was renamed to
 clover . See previous version of the article for older images.

systemd
Main documentation: https://wiki.archlinux.org/title/Systemd.

All automatically started Clover software is launched as a clover.service
systemd service.

The service may be restarted by the systemctl command:

sudo systemctl restart clover

Text output of the software can be viewed using the journalctl command:

journalctl -u clover

To run Clover software directly in the current console session, you can use the
 roslaunch command:

sudo systemctl restart clover
roslaunch clover clover.launch

You can disable Clover software autolaunch using the disable command:

sudo systemctl disable clover

roslaunch
Main documentation: http://wiki.ros.org/roslaunch.

The list of nodes / programs declared for running is specified in file
 /home/pi/catkin_ws/src/clover/clover/launch/clover.launch .

You can add your own node to the list of automatically launched ones. To do this,
place your executable file (e.g. my_program.py) into folder
 /home/pi/catkin_ws/src/clover/clover . Then add the start of your node to
 clover.launch , for example:

<node name="my_program" pkg="clover" type="my_program.py" output="screen"/>

The started file must have permission to run:

https://github.com/CopterExpress/clover/blob/v0.19/docs/en/autolaunch.md
https://wiki.archlinux.org/title/Systemd
http://wiki.ros.org/roslaunch

Using FS-A8S

225

chmod +x my_program.py

When scripting languages are used, a shebang should be placed at the beginning
of the file, for example:

#!/usr/bin/env python3

https://en.wikipedia.org/wiki/Shebang_(Unix)

Using FS-A8S

226

Work with ROS from browser
Using the roslibjs library it's possible to work with all the ROS resources
(topics, services, parameters) from JavaScript code within the browser, which
allows creating various interactive web applications for drone.

All the required software is preinstalled in RPi image for Clover.

Example
An example of a web page, working with roslib.js :

Taking off, landing and all the rest operations can be implemented in a similar
way.

The page should be placed in the /home/pi/catkin_ws/src/clover/clover/www/
directory. After that, it will be available at
 http://192.168.11.1/clover/<page_name>.html . When the page is opened,
browser should show an alert with the drone telemetry and constantly print the
state of the flight controller to the console.

<html>
 <script src="js/roslib.js"></script>
 <script type="text/javascript">
 // Establish roslibjs connection
 var ros = new ROSLIB.Ros({ url: 'ws://' + location.hostname + ':9090' }

 ros.on('connection', function () {
 // Connection callback
 alert('Connected');
 });

 // Declare get_telemetry service client
 var getTelemetry = new ROSLIB.Service({ ros: ros, name : '/get_telemetr

 // Call get_telemetry
 getTelemetry.callService(new ROSLIB.ServiceRequest({ frame_id: 'map' })
 // Service respond callback
 alert('Telemetry: ' + JSON.stringify(result));
 });

 // Subscribe to `/mavros/state` topic
 var stateSub = new ROSLIB.Topic({ ros : ros, name : '/mavros/state', me
 stateSub.subscribe(function(msg) {
 // Topic message callback
 console.log('State: ', msg);
 });
 </script>
</html>

http://wiki.ros.org/roslibjs

Using FS-A8S

227

See additional information in roslibjs tutorial.

Web GCS
See an example of simplified web ground control station on Clover at
http://192.168.11.1/clover/gcs.html.

http://wiki.ros.org/roslibjs/Tutorials/BasicRosFunctionality
http://192.168.11.1/clover/gcs.html

Using FS-A8S

228

Blocks programming for Clover
Visual blocks programming feature has
been added to the RPi image, starting with
the version 0.21. Blocks programming is
implemented using Google Blockly library.
Blocks programming integration can lower
the entry barrier to a minimum.

Configuration
For correct work of the blocks programming, blocks argument in the Clover
launch-file (~/catkin_ws/src/clover/clover/launch/clover.launch) should be equal
to true :

<arg name="blocks" default="true"/>

Running
To run Clover's blocks programming interface, connect to Clover's Wi-Fi and go to
web-page http://192.168.11.1/clover_blocks/ or click the link Blocks programming
at the main page.

The page looks as follows:

Assemble your program using blocks in the menu at the left and then click Run
button for running. You can also view generated Python-code, switching to Python
tab.

https://developers.google.com/blockly
http://192.168.11.1/clover_blocks/

Using FS-A8S

229

The Stop button stops the program. Clicking Land button also stops the program
and lands the drone.

Storing and loading
To store the program,
open the menu at the top
right, select Save item
and input your program's
name. The name should contain only Latin characters, hyphen, underline and dot
characters. All your stored programs are available at the same menu.

Your programs are stored as XML-files in the
 /catkin_ws/src/clover/clover_blocks/programs/ directory of the SD-card.

Note also example programs, available at the same menu.

Blocks
The set of blocks is somewhat similar to the set of ROS-services of Clover's
autonomous flights API. This section contains descriptions of some of them.

Clover's blocks are separated into 4 categories:

Flight – autonomous flight related commands.
State – blocks for obtaining the drone state parameters.
LED – blocks for controlling LED strip.
GPIO – blocks for working with GPIO pins.

The rest of categories contains standard Blockly's blocks.

take_off

Take off to specified altitude in meters. The altitude may be an arbitrary block, that
returns a number.

The wait flag specifies, if the drone should wait until take off is complete, before
executing the next block.

navigate

Using FS-A8S

230

Navigate to specified point. Coordinates are specified in meters.

The wait flag specifies, if the drone should wait until navigation is complete,
before executing the next block.

Relative to field

This block allows to specify the coordinate frame of the target point:

body – coordinates, relative to the drone: forward, left, up.
markers map – coordinates, relative to the map of ArUco-markers.
marker – coordinates, relative to an ArUco-marker; marker's ID input fields
appears.
last navigate target – coordinates, relative to the last specified navigate point.
map – drone's local coordinate system, linked with the point of its
initialization.
global – global coordinates system (latitude and longitude) and relative
altitude.
global, WGS 84 alt. – global coordinates system and WGS 84 altitude.

land

Land the drone.

The wait flag specifies, if the drone should wait until landing is complete, before
executing the next block.

https://en.wikipedia.org/wiki/WGS_84

Using FS-A8S

231

wait

Wait specified time period in seconds. The time period may be an arbitrary block,
that returns a number.

wait_arrival

Wait, until the drone reaches navigate-block's target point.

get_position

The block returns current position, velocity or yaw angle of the drone relative to
the specified coordinate frame.

set_effect

The block allows to set animations to LED strip, similarly to set_effect ROS-
service.

Example of using the block with a random color (colors-related blocks are located
in Colour category):

Work with GPIO

GPIO category contains blocks for working with GPIO. Note, that for correct work
of these blocks, pigpiod daemon should be running:

sudo systemctl enable pigpiod.service
sudo systemctl start pigpiod.service

See details on GPIO in the appropriate article.

Using FS-A8S

232

Simulation overview
The Clover simulation environment allows users to run and debug their code
within a simulator while using most of the features available on the real drone.
The simulation utilizes PX4 SITL mode and uses the same ROS code as the real
drone. Most hardware is simulated as well.

Features
Basic, user-installable environment includes:

high-quality Clover 4 visual model;
Gazebo plugins for Clover-specific hardware (e.g. LED strip);
modification-friendly xacro drone descriptions;
sample models and worlds;
 roslaunch files for quick simulation launching and configuration.

Additionally, a virtual machine image that mimics the real drone as closely as
possible is provided with the following features:

easy access to the simulation environment;
Visual Studio Code editor, preconfigured to work with ROS packages;
Monkey web server for web-based Clover plugins;
always-running roscore service;
ROS GUI tools (rviz , rqt).

Architecture
The simulation environment is based on the following components:

Gazebo, a state-of-the-art robotics simulator;
PX4, specifically its SITL (software-in-the-loop) components;

https://wiki.ros.org/xacro
https://wiki.ros.org/roslaunch
http://gazebosim.org/
https://px4.io/

Using FS-A8S

233

 sitl_gazebo package containing Gazebo plugins for PX4;
ROS packages and Gazebo plugins.

Video
Short video review of the simulator:

https://github.com/PX4/sitl_gazebo

Using FS-A8S

234

Native setup
Setting up the simulation environment from scratch requires some effort, but
results in the most performant setup, with less chance of driver issues.

Prerequisites: Ubuntu 20.04.

Install ROS
Install ROS Noetic using the official installation manual (Desktop or Full install).

Add sourcing ROS' setup.bash initialization script to your .bashrc :

echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc
source ~/.bashrc

Install required tools:

sudo apt install build-essential git python3-pip python3-rosdep

Create a workspace for the simulation
Create a workspace for the simulation:

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws
catkin_make
echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

Clone Clover sources:

cd ~/catkin_ws/src
git clone --depth 1 https://github.com/CopterExpress/clover
git clone --depth 1 https://github.com/CopterExpress/ros_led
git clone --depth 1 https://github.com/ethz-asl/mav_comm

Install all dependencies using rosdep :

cd ~/catkin_ws
sudo rosdep init
rosdep update
rosdep install --from-paths src --ignore-src -y

Install Python dependencies:

sudo /usr/bin/python3 -m pip install -r ~/catkin_ws/src/clover/clover/requireme

http://wiki.ros.org/noetic/Installation/Ubuntu

Using FS-A8S

235

Get PX4 sources
PX4 will be built along with the other packages in our workspace. You may clone
it directly into the workspace or put it somewhere and symlink to
 ~/catkin_ws/src . We will need to put its sitl_gazebo and mavlink submodules
into ~/catkin_ws/src as well.

Clone PX4 sources and make the required symlinks:

You may use more recent PX4 version, but something may not work as
expected in that case.

If clone fails with network error (fatal: fetch-pack: invalid index-pack
output), set HTTP version 1.1 using git config --global http.version
HTTP/1.1 command (don't forget to return it back after clone using git
config --global http.version HTTP/2). Alternative solution is cloning the
repository and submodules through SSH using git config --global
url."git@github.com:".insteadOf https://github.com/ command (requires
setting up valid SSH key in GitHub profile settings).

Install PX4 prerequisites
PX4 comes with its own script for dependency installation. We may as well
leverage it:

cd ~/catkin_ws/src/PX4-Autopilot/Tools/setup
sudo ./ubuntu.sh

This will install everything required to build PX4 and its SITL environment.

You may want to skip installing the ARM toolchain if you're not planning on
compiling PX4 for your flight controller. To do this, use the --no-nuttx flag:
 sudo ./ubuntu.sh --no-nuttx .

Install more required Python packages:

pip3 install --user toml

Add the Clover airframe
Add the Clover airframe to PX4 using the command:

git clone --recursive --depth 1 --branch v1.12.3 https://github.com/PX4/PX4-Aut
ln -s ~/PX4-Autopilot ~/catkin_ws/src/
ln -s ~/PX4-Autopilot/Tools/sitl_gazebo ~/catkin_ws/src/
ln -s ~/PX4-Autopilot/mavlink ~/catkin_ws/src/

Using FS-A8S

236

Install geographiclib datasets
 mavros package requires geographiclib datasets to be present:

sudo /opt/ros/noetic/lib/mavros/install_geographiclib_datasets.sh

Build the simulator
Build your workspace:

cd ~/catkin_ws
catkin_make -j1

The -j1 flag means that the build will not use parallel processes, as
building with parallel processes on a virtual machine may run out of
memory. If you have enough memory, you may not use this flag.

Run the simulator
In order to be sure that everything was built correctly, try running the simulator for
the first time:

roslaunch clover_simulation simulator.launch

You can test autonomous flight using example scripts in
 ~/catkin_ws/src/clover/clover/examples directory.

Additional steps
To make it possible to run Gazebo simulation environment without Clover
(gazebo command), add into your .bashrc sourcing Gazebo's initialization
script:

echo "source /usr/share/gazebo/setup.sh" >> ~/.bashrc

Optionally, install roscore systemd service to have roscore running in background:

ln -s ~/catkin_ws/src/clover/clover_simulation/airframes/* ~/PX4-Autopilot/ROMF

sed -i "s/pi/$USER/g" ~/catkin_ws/src/clover/builder/assets/roscore.service
sudo cp ~/catkin_ws/src/clover/builder/assets/roscore.service /etc/systemd/syst
sudo systemctl enable roscore
sudo systemctl start roscore

Using FS-A8S

237

Web tools setup

Install any web server to serve Clover's web tools (~/.ros/www directory), e. g.
Monkey:

Create ~/.ros/www using the following command:

rosrun clover www

If the set of packages containing a web part (through www directory) is changed,
the above command also must be run.

wget https://github.com/CopterExpress/clover_vm/raw/master/assets/packages/monk
sudo dpkg -i /tmp/monkey_*.deb
sed "s/pi/$USER/g" ~/catkin_ws/src/clover/builder/assets/monkey | sudo tee /etc
sudo sed -i 's/SymLink Off/SymLink On/' /etc/monkey/monkey.conf
sudo cp ~/catkin_ws/src/clover/builder/assets/monkey.service /etc/systemd/syste
sudo systemctl enable monkey
sudo systemctl start monkey

Using FS-A8S

238

Simulation VM setup
In addition to native installation instructions, we provide a preconfigured developer
virtual machine image. The image contains:

Ubuntu 20.04 with XFCE lightweight desktop environment;
ROS packages required to develop for the Clover platform;
QGroundControl;
preconfigured Gazebo simulation environment;
Visual Studio Code with C++ and Python plugins.

The default username on the VM is clover , with password clover .

The VM is an easy way to set up a simulation environment, but can be used as a
development environment for a real drone as well.

Downloading
You can download the latest VM image in the VM releases repository.

Setting up the VM
You need to use a VM manager that supports OVF format, like VirtualBox,
VMware Player or VMware Workstation.

At the time of writing VirtualBox had issues running the VM, particularly with
3D applications. We recommend using VMware Player or VMware
Workstation if possible. The following steps assume you're using VMware
Player.

Make sure that you have hardware virtualization enabled in your BIOS/UEFI (it
may be supported by your hardware but turned off by default). The steps to
enable virtualization differ from manufacturer to manufacturer, but should be
described in your system manual. Consult your system's manufacturer if you're
having trouble turning virtualization on.

1. Import the OVA archive into your virtualization environment. Use the Open a
Virtual Machine option in VMware Player:

https://github.com/CopterExpress/clover_vm/releases/latest
https://github.com/CopterExpress/clover_vm/releases
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/products/workstation-player.html
https://www.vmware.com/products/workstation-pro.html

Using FS-A8S

239

You may see a dialog box with a warning about the VM format:

You can safely ignore the warning and press Retry.

2. Right-click on the VM name and select Virtual Machine Settings. In the new
window, set the following parameters:

Using FS-A8S

240

increase the amount of memory available to the virtual machine (a good
rule of thumb is 2048 MB per CPU core, but no less than 4 GB):

increase the amount available CPU cores:

Using FS-A8S

241

enable 3D acceleration:

enable USB 2.0/3.0 controller (if you plan to connect external devices to
the VM):

Using FS-A8S

242

optionally enable the "bridged" network connection (if you plan to
connect to a real drone):

Some host network adapters may not work well with the bridged
network. Consider using external USB Wi-Fi adapters managed by
your VM to connect to a real drone.

3. "Power on" the virtual machine. You may see a warning message about your
host system not providing 3D acceleration:

Make sure you have the latest GPU drivers for your host system. If the
warnings persist, add the following line to clover-devel.vmx (actual file name
may differ based on the VM name):

 mks.gl.allowBlacklistedDrivers = "TRUE"

Using FS-A8S

243

You can find this file in a folder where the VM is imported to.

4. (Bridged networking only) Set up network bridge configuration in VM settings
or using vmware-netcfg utility (in Linux):

Select vmnet0 in the networks list, set it to Bridged, and choose the adapter
you are planning to use to connect to drone in the drop-down menu.

Using FS-A8S

244

Using the simulator
The Clover simulation environment allows the user to test their code without any
risk of equipment damage. Additionally, the virtual machine-based environment
has additional (non-ROS) services that are present on a real drone, like Monkey
web server.

Running the simulation
After setting up the simulation packages or importing and running the VM, you
can use roslaunch to start Gazebo simulation:

Be sure to activate your workspace first
source ~/catkin_ws/devel/setup.bash
roslaunch clover_simulation simulator.launch

Alternatively, if you are using the VM, just double-click on the Gazebo PX4
icon on the desktop.

This will launch Gazebo server and client, the PX4 SITL binary and Clover nodes.
The terminal in which the command was run will display diagnostic messages
from the nodes and PX4, and will accept input for the PX4 command interpreter:

You can use QGroundControl to configure the simulated drone parameters, plan
missions (if GPS is simulated) and control the drone using a joystick:

Using FS-A8S

245

You can also use our simplified OFFBOARD control to control the drone, and
traditional ROS GUI utilities like rviz and rqt to analyze the drone state:

Configuring the simulation
The simulation can be configured by passing additional arguments to the
 roslaunch command or by changing the
 ~/catkin_ws/src/clover/clover_simulation/launch/simulator.launch file. Nodes
that provide ArUco detection, optical flow calculation and other services can be
configured by changing their respective .launch files, just like on a real drone.

Using FS-A8S

246

Enabling GPS

In order to enable GPS sensor, set the gps argument in simulator.launch to
 true :

<arg name="gps" value="true"/>

Turn also on the use GPS flag in the EKF2_AID_MASK PX4 parameter (using
QGroundControl).

Camera

If you don't need the camera when flying using GPS, it may be disabled in
 simulator.launch file:

<arg name="main_camera" default="false"/>

Another sensors

If you wish to add additional sensors or change their placement, you will have to
change the drone description. The description file is located in
 ~/catkin_ws/src/clover/clover_description/urdf/clover/clover4.xacro , and uses
the xacro format to build URDF description.

Changing the default world

Gazebo plugins for the drone currently require the real_time_update_rate world
parameter to be 250, and max_step_size to be 0.004. Using other values will not
work. Consider using
 ~/catkin_ws/src/clover/clover_simulation/resources/worlds/clover.world as a
base.

http://wiki.ros.org/xacro

Using FS-A8S

247

Performance suggestions
Gazebo simulation environment is resource-intensive, and requires a fast CPU
and a decent GPU for real-time execution. However, the simulation may still work
on less powerful systems at slower-than-realtime rate. Below are some
suggestions for running Gazebo on hardware that does not allow realtime
execution.

Use throttling_camera plugin

By default, Gazebo does not slow simulation down for visual sensors. This can be
remedied by using the throttling_camera plugin from clover_simulation .

You can enable it for the drone by changing the maintain_camera_rate argument
to true in clover_description/launch/spawn_drone.launch :

 <!-- Slow simulation down to maintain camera rate -->
 <arg name="maintain_camera_rate" default="true"/>

The plugin will collect publishing rate statistics and slow the simulation down so
that the camera publishing rate is no less than requested. However, large
slowdowns may negatively affect non-ROS software that connects to PX4. If your
simulation is being slowed down to values lower than 0.5 of realtime, consider
using the next suggestion.

Set simulation speed

Since v1.9 the PX4 SITL setup supports setting the simulation speed by setting
the PX4_SIM_SPEED_FACTOR environment variable. Its value is picked up by PX4
startup scripts, which in turn reconfigure it to expect a certain speedup/slowdown.

You should set its value to the actual real time factor that you get with
 throttling_camera . The real time factor may be found in the Gazebo GUI window
at the bottom:

In this example you should set PX4_SIM_SPEED_FACTOR to 0.42 when launching
the simulation:

PX4_SIM_SPEED_FACTOR=0.42 roslaunch clover_simulation simulator.launch

https://docs.px4.io/master/en/simulation/#run-simulation-faster-than-realtime

Using FS-A8S

248

If you are using the VM, it may be convenient to put the value in the
Gazebo desktop shortcut. Right-click on the Gazebo icon, select
"Properties..." and add PX4_SIM_SPEED_FACTOR=0.42 to the Command field
as follows:

Allocate more resources to the VM

The virtual machine may benefit from several CPU cores, especially if the cores
are not very performant. In our tests, a four-core machine with only a single core
allocated to the VM was unable to run the simulation, with constant interface
freezes and dropped ROS messages. The same machine with all four cores
available to the VM was able to run the simulation at 0.25 real-time speed.

Do note that you should not allocate more resources than you have on your host
hardware.

Changing the map of ArUco-markers in the simulator

In order to change the map of ArUco-markers in the simulator, you can use the
following command:

In this example, map.txt is the name of markers name.

rosrun clover_simulation aruco_gen --single-model --source-world=$(catkin_find

Using FS-A8S

249

Running simulator on M1 powered
computer
There is no preconfigured VM image for ARM64 architecture of M1 chip (Apple
Silicon), so the only possibility is to install the simulation software manually.

The recommended virtual machine hypervisor is UTM app. Also it's possible to
use VMware Fusion Public Tech Preview with M1 support.

Simulation installation with UTM

1. Download UTM App from the official site mac.getutm.app and install it.
2. Download Ubuntu Linux 20.04 installation iso-file for ARM64 architecture

using the link: https://clovervm.ams3.digitaloceanspaces.com/focal-desktop-
arm64.iso.

3. Create a new virtual machine in UTM, using the following settings:

Type: Virtualize.
Operating System: Linux.
Boot ISO Image: choose downloaded file focal-desktop-arm64.iso .
Memory: 4096 MB or more.
CPU Cores: 4 or more.
Turn on Enable hardware OpenGL acceleration option.
Storage: 20 GB or more.

4. Run the created virtual machine.

5. Choose Install Ubuntu in the menu and install it using the installation master.

https://mac.getutm.app/
https://mac.getutm.app/
https://clovervm.ams3.digitaloceanspaces.com/focal-desktop-arm64.iso

Using FS-A8S

250

Recommended apps: Minimal installation.
Installation type: Erase disk and install Ubuntu.
Input your account parameters, for example:

6. Finish the installation and run the system (you need to eject the virtual CD or
choose Boot from next volume in the boot menu).

7. Install the simulation using the native setup manual.

Troubleshooting

Black screen

If you see a black screen on your virtual machine, try to run the machine without
the GPU support.

In virtual machine settings, choose Display, and set Emulated Display Card menu
to virtio-ramfb. Run you machine. If it runs successfully, change the setting back
to virtio-ramfb-gl (GPU Supported) and run it again.

Problem with git clone

The following error can occur while performing git clone :

In this case, change the type of the network card to bridged. In the virtual machine
settings, choose Network, and set Network Mode menu to Bridged (Advanced).

Later, if some network issues occur, change the network mode back to Shared
Network.

on git clone if error: RPC failed; curl 56 GnuTLS recv error (-54): Error in th
fatal: the remote end hung up unexpectedly
fatal: early EOF
fatal: index-pack failed

Using FS-A8S

251

Using FS-A8S

252

ROS
Main documentation: https://wiki.ros.org.

ROS is a widely used framework for
developing complex and distributed robotic
systems. The Clover autonomous flights platform is based on ROS.

Installation
ROS is already installed on the RPi image.

To install ROS on your PC you may address the official installation
documentation. For a quick start it's recommended to use the virtual machine
image with ROS and Clover simulator.

Concepts

Nodes

Main article: https://wiki.ros.org/Nodes.

ROS node is a special program (usually written in Python or C++) that
communicates with other nodes via ROS topics and ROS services. Dividing
complex robotic systems into isolated nodes provides certain advantages:
reduced coupling of the code, increased reusability and reliability.

Many robotic libraries and drivers are made as ROS nodes.

In order to turn an ordinary program into a ROS node, include the rospy
(Python) or roscpp (C++) library, and insert the initialization code.

An example of a ROS node in Python:

import rospy

rospy.init_node('my_ros_node') # the name of the ROS node

rospy.spin() # entering an infinite loop...

Any autonomous flight script for Clover is a ROS node.

Topics

Main article: https://wiki.ros.org/Topics

A topic is a named data bus used by the nodes for exchanging messages. Any
node can publish a message to any topic, and subscribe to any topic.

https://wiki.ros.org/
https://wiki.ros.org/noetic/Installation/Ubuntu
https://wiki.ros.org/Nodes
https://wiki.ros.org/Topics

Using FS-A8S

253

Для каждого созданного топика должен быть задан тип сообщений, которые
по нему передаются. ROS включает в себя большое количество стандартных
типов сообщений, покрывающих различные аспекты робототехники, но при
необходимости возможно создание собственных типов сообщений. Примеры
стандартных типов сообщений:

Each topic has the a of messages it passes. ROS include a lot of standard
message types, covering different aspects of robotics. Creating custom message
types is also possible. Example of standard message types:

Message type Description

 std_msgs/Int64 Integer number.

 std_msgs/Float64 Double-precision floating-point number.

 std_msgs/String String.

 geometry_msgs/PoseStamped

Position and orientation of an object in a
given coordinate system and a time stamp
(widely used for passing the robot pose or
some robot's part pose).

 geometry_msgs/TwistStamped
Linear and angular velocity of an object in
a given coordinate system and a time
stamp.

 sensor_msgs/Image Image (see the article on working with the
camera).

See the rest of standard message types in packages: common_msgs ,
 std_msgs , geometry_msgs , sensor_msgs , and others.

Example of publishing a message of type String) in a topic /foo in Python:

Example of subscription to a topic /foo :

from std_msgs.msg import String

rospy.init_node('my_ros_node')

foo_pub = rospy.Publisher('/foo', String, queue_size=1) # creating a Publisher

foo_pub.publish(data='Hello, world!') # publishing the message

import rospy
from std_msgs.msg import String

rospy.init_node('my_ros_node')

def foo_callback(msg):
 print(msg.data)

Subscribing. When a message is received in topic /foo, function foo_callback
rospy.Subscriber('/foo', String, foo_callback)

https://docs.ros.org/api/std_msgs/html/msg/Int64.html
https://docs.ros.org/api/std_msgs/html/msg/Float64.html
https://docs.ros.org/api/std_msgs/html/msg/String.html
https://docs.ros.org/api/geometry_msgs/html/msg/PoseStamped.html
https://docs.ros.org/api/geometry_msgs/html/msg/TwistStamped.html
https://docs.ros.org/api/sensor_msgs/html/msg/Image.html
http://wiki.ros.org/common_msgs
https://wiki.ros.org/std_msgs
https://wiki.ros.org/geometry_msgs
https://wiki.ros.org/sensor_msgs
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/(https:/docs.ros.org/api/std_msgs/html/msg/String.html

Using FS-A8S

254

You can read a topic message once, using wait_for_message function:

You can also work with topics using the rostopic utility. For example, using the
following command, you can view messages published in topic /mavros/state :

rostopic echo /mavros/state

The rostopic info command shows the type of messages in the topic, and
 rostopic hz shows frequency of published messages.

Also you can monitor and visualize topics using graphical tools of ROS.

Services

Main article: https://wiki.ros.org/Services

A service can be assimilated to the a function that can be called from one node,
and processed in another one. The service has a name that is similar to the name
of the topic, and 2 message types: request type and response type.

Thus, ROS services implement remote procedure call (RPC) pattern.

Example of invoking a ROS service in Python:

You can also work with the services using the rosservice utility. For instance,
you can call service /get_telemetry from the command line:

rosservice call /get_telemetry "{frame_id: ''}"

More examples of using the services for Clover quadcopter autonomous flights
are available in the documentation for node simple_offboard.

Names

Main article: https://wiki.ros.org/Names.

msg = rospy.wait_for_message('/foo', String, timeout=3) # wait for a message i

import rospy
from clover.srv import GetTelemetry

rospy.init_node('my_ros_node')

Creating a wrapper for the get_telemetry service of the clover package with t
get_telemetry = rospy.ServiceProxy('get_telemetry', srv.GetTelemetry)

Invoking the service, and getting the quadcopter telemetry:
telemetry = get_telemetry()

https://wiki.ros.org/Services
https://en.wikipedia.org/wiki/Remote_procedure_call
https://wiki.ros.org/Names

Using FS-A8S

255

Any topic, service or a parameter is identified with a unique name. A ROS name
is hierarchical structure with a / symbol as a separator (which is close to a file
name in a file system).

Examples of ROS names:

 / (global namespace)
 /foo

 /stanford/robot/name

 /wg/node1

This names are global (close to global names in a file system). In practice, it's
recommended to use private or relative names.

Private name

Each node can use its own private namespace (corresponding its name) for its
resources. For example, aruco_detect node may publish such topics:

 /aruco_detect/markers

 /aruco_detect/visualization

 /aruco_detect/debug

When a node is referring its private resource, instead of /aruco_detect/
namespace it may use ~ symbol:

 ~markers

 ~visualization

 ~debug

Thus, creating a foo topic and the private namespace would look like this:

private_foo_pub = rospy.Publisher('~foo', String, queue_size=1)

Relative name

Several nodes may group into a common namespace (for example, when there
are several robots in the network). For referring topics and services in the current
namespace, the opening / symbol is omitted.

Example of create a foo topic in the current namespace:

relative_foo_pub = rospy.Publisher('foo', String, queue_size=1)

Generally, it's recommended to use private or relative names instead of
global ones.

Working on several PCs

Main article: http://wiki.ros.org/ROS/Tutorials/MultipleMachines.

http://wiki.ros.org/ROS/Tutorials/MultipleMachines

Using FS-A8S

256

The advantage of using ROS is the possibility of distributing the nodes across
several PCs in the network. For example, a node that recognizes an image may
be run on a more powerful PC; the node that controls the copter may be run
directly on a Raspberry Pi connected to the flight controller, etc.

Using FS-A8S

257

MAVROS
Main article is available in the official documentations: http://wiki.ros.org/mavros

MAVROS (MAVLink + ROS) is a ROS package that allows controlling drones via
the MAVLink protocol. MAVROS supports PX4 and APM flight stacks.
Communication may be established via UART, USB, TCP or UDP.

MAVROS subscribes to certain ROS topics that can be used to send commands,
publishes telemetry to other topics, and provides services.

The MAVROS node is automatically started in the Clover launch-file. In order to
set the type of connection, change the fcu_conn argument.

Simplified interaction with the drone is possible with the use of
[simple_offboard] package (simple_offboard.md).

Some MAVROS plugins are disabled by default in the clover package in
order to save resources. For more information, see the plugin_blacklist
parameter in /home/pi/catkin_ws/src/clover/clover/launch/mavros.launch .

Main services
 /mavros/set_mode — set flight mode of the controller. Most often used to set the
OFFBOARD mode to accept commands from Raspberry Pi.

 /mavros/cmd/arming — arm or disarm drone motors (change arming status).

Main published topics
 /mavros/state — status of connection to the flight controller and flight controller
mode.

 /mavros/local_position/pose — local position and orientation of the copter in the
ENU coordinate system.

 /mavros/local_position/velocity — current speed in local coordinates and
angular velocities.

 /mavros/global_position/global — current global position (latitude, longitude,
altitude).

 /mavros/global_position/local — the global position in the UTM coordinate
system.

 /mavros/global_position/rel_alt — relative altitude (relative to the arming
altitude).

http://wiki.ros.org/mavros
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

Using FS-A8S

258

Messages published in the topics may be viewed with the rostopic utility, e.g.,
 rostopic echo /mavros/state . See more in working with ROS.

Main topics for publication
 /mavros/setpoint_position/local — set target position and yaw of the drone (in
the ENU coordinate system).

 /mavros/setpoint_position/global – set target position in global coordinates
(latitude, longitude, altitude) and yaw of the drone.

 /mavros/setpoint_position/cmd_vel — set target linear velocity of the drone.

 /mavros/setpoint_attitude/attitude and
 /mavros/setpoint_attitude/att_throttle — set target attitude and throttle level.

 /mavros/setpoint_attitude/cmd_vel and /mavros/setpoint_attitude/att_throttle
— set target angular velocity and throttle level.

Topics for sending raw packets

 /mavros/setpoint_raw/local — sends SET_POSITION_TARGET_LOCAL_NED
message. Allows setting target position/target speed and target yaw/angular yaw
velocity. The values to be set are selected using the type_mask field.

 /mavros/setpoint_raw/attitude — sends SET_ATTITUDE_TARGET message.
Allows setting the target attitude /angular velocity and throttle level. The values to
be set are selected using the type_mask field

 /mavros/setpoint_raw/global — sends
SET_POSITION_TARGET_GLOBAL_INT. Allows setting the target attitude in
global coordinates (latitude, longitude, altitude) and flight speed.

https://mavlink.io/en/messages/common.html#SET_POSITION_TARGET_LOCAL_NED
https://mavlink.io/en/messages/common.html#SET_ATTITUDE_TARGET
https://mavlink.io/en/messages/common.html#SET_POSITION_TARGET_GLOBAL_INT

Using FS-A8S

259

Supplementary materials
This section contains articles that are not included in the main sections, as well as
articles by the users on various subjects related to UAV.

To learn more about publishing text in this section, see the article "Contributing to
Clover".

Using FS-A8S

260

COEX Pix
The COEX Pix flight controller is a modified Pixracer FCU. It is a part of the
Clover 4 quadrotor kit.

The source files of the COEX Pix flight controller are published under the
CC BY-NC-SA license.

Revision 1.1

Physical specs

Board size: 35x35 mm.
Mounting hole pattern: standard 30.5 mm.
Mounting hole diameter: 3.2 mm.
Board mass: 9 g.
Operating temperature range: -5..+65 ºC.
Input voltage: 4.8..5.5 V.

Key features

Main System-on-Chip: STM32F427VIT6.
FRAM chip: FM25V02A
Built-in sensors:

MPU9250 9DOF accelerometer/gyroscope/magnetometer.
MS5607 barometer.

Ports

TELEM 1 (JST-GH 4 pin) – telemetry port 1, UART.
TELEM 2 (JST-GH 4 pin) – telemetry port 2, UART.
GPS (JST-GH 6 pin) – GNSS (UART) and external compass (I2C) port.
I2C (JST-GH 4 pin) – I2C port for supported devices (shares lanes with GPS
port).
PWR (JST-GH 6 pin) – port for PDB connection (COEX PDB or compatible),
with two power lanes, two ground lanes, and voltage and current sensor
inputs.
RC IN (JST-GH 4 pin) – RC input port with RSSI pin. Supports PPM and
S.BUS protocols.
Micro USB port for PC connection (USB 2.0/1.1).
MicroSD slot (supports up to 32gb microSD cards).
6 servo outputs for ESCs and other peripherals.

Port pinouts

https://docs.px4.io/master/en/flight_controller/pixracer.html
https://github.com/CopterExpress/hardware/tree/master/COEX%20Pix

Using FS-A8S

261

Using FS-A8S

262

On rev. 1.0 boards RC IN port and microSD slot are switched. Pinout for
the RC IN port is the same on these boards.

Mounting suggestions

Important: The board is meant to be installed with a non-standard orientation (roll
180º, yaw 90º) on the Clover airframe. Therefore, the SENS_BOARD_ROT PX4
parameter should be set to ROLL 180, YAW 90 .

Usage notes

In order to reduce magnetic interference from the PDB and power cables you
should mount the FCU as far away from these parts as possible. You should have
at least 15 mm clearance from high-power parts.

You may want to disable internal compass if you're using an external
GNSS+compass module.

If your drone does not have a protective cover for the FCU, you should place a
piece of foam over the barometer.

The FCU has power passthrough from the PWR input to the servo rail. Supplying
additional power to the servo rail is not recommended if the PWR input is used.
Powering the FCU from USB and PWR/AUX inputs is acceptable.

Board specifics

The board utilizes low-noise DC-DC converters, voltage inputs have LC and
ferrite filters.

Revision 1.2

Innovations

Replaced USB Micro-B connector with USB Type-C connector.
Changed the slot for microSD cards to a deeper one.
Changed pin assignments on the I2C connector.
Added ferrite filters in the power circuit.

Port pinouts

Using FS-A8S

263

Using FS-A8S

264

COEX PDB
COEX PDB is the power distribution board used in Clover 4 Drone kit.

Board size: 35x35 mm.

The source files of the COEX PDB board are published under the CC BY-
NC-SA license.

Port pinouts

Top view

Bottom view

https://github.com/CopterExpress/hardware/tree/master/COEX%20PDB

Using FS-A8S

265

Using FS-A8S

266

COEX GPS
The GNSS receiver COEX GPS is compatible with the COEX Pix flight controller.
This receiver comes with a COEX Clover Drone Kit.

The source files of the COEX GPS board are published under the CC BY-
NC-SA license.

Port pinouts

Top view

Bottom view

https://github.com/CopterExpress/hardware/tree/master/COEX%20GPS

Using FS-A8S

267

Using FS-A8S

268

Connecting to Raspberry Pi using
SSH keys
This instruction will allow you to quickly connect to the Raspberry Pi. In just one
second. Without entering a password.

Basic information on working with SSH can be found in the section SSH access to
Raspberry Pi. In this section you will find advanced information on using SSH, as
well as a number of recommendations on using SSH when working with Clover.

General information
SSH (secure shell) is a network protocol that allows you to remotely control the
operating system on the computer you are connected to. It is similar to a protocol
such as telnet, but allows you to encrypt network traffic during interaction. Thus,
the transfer of passwords and other secret information is hidden. The Raspberry
Pi operating system supports SSH communication, like many other common
Linux-based systems.

SSH allows you not only to organize work in the command shell, but also to
transfer files, as well as tunnel transmitted data from other protocols, such as
information from a video camera or telemetry. In addition, SSH supports several
authentication modes (that is, verification of the connecting user), with its help it is
possible to connect to the Clover not only using a password, but also password-
free access (authentication by a key pair, i.e. SSH keys).

Password authentication
Authentication by password on the image of RPi for Clover is enabled by default
and the password can be used to enter into the command shell of the
minicomputer. On computers with Linux operating systems (and primarily on
servers connected to the Internet), the ability to login with a password is usually
disabled, since there is a more secure authentication method.

It is not recommended to disable logging into Clover by password, since
you can completely lose access to the command shell over the network.

When connecting to RPi for the first time, you will see the notification with a
suggestion to save a unique fingerprint. The stored information is accumulated on
computers from which SSH login to RPi is performed, and is checked for sudden
substitution.

On Linux and Unix (Mac OS) the first SSH-connection to the RPi looks like this:

Using FS-A8S

269

In graphical programs in Windows, you will periodically see window with similar
warnings.

Windows 10 has a built-in SSH client that can be run from the command
line, see the Microsoft usage guide at this link.

Authentication using SSH keys
SSH keys are a convenient, fast alternative way to connect to the Raspberry Pi,
which does not require entering a password. In particular, when operating with
Clover, this method is convenient because it saves time, and therefore battery
power, and the time limit allocated for events in flight zones. In addition, using
SSH keys opens up opportunities for convenient use of other programs that you
would hardly use if you needed to type a password every time.

The SSH key is divided into two parts: the pair consists of a so-called private and
public key. The key is generated once. One part of the key (open) is transferred
once to the remote computer to which the connection will be made, the second
part of the key (private) is stored on the computer that will connect, the private
part of the key is not transferred anywhere.

ssh pi@192.168.11.1
The authenticity of host '192.168.11.1 (192.168.11.1)' can't be established.
ED25519 key fingerprint is SHA256:4w/7MqTgrtsqPwKnVAMISpouaOJNqzUew2NkJjldMWI
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.11.1' (ED25519) to the list of known host
pi@192.168.11.1's password: *********
Linux clover-3270 5.10.17-v7l+ #1414 SMP Fri Apr 30 13:20:47 BST 2021 armv7l

whoami
pi

exit

https://learn.microsoft.com/ru-ru/windows-server/administration/openssh/openssh_install_firstuse

Using FS-A8S

270

The public key is copied once to the Raspberry Pi, and the private key is
stored in the laptop as a file.

Preparation

In order for a key pair to appear, it must be generated. In Linux and Unix (Mac
OS), there is a program ssh-keygen with which we will get the key pair we need
(attention! commands are executed not in Raspberry Pi, and not in the virtual
machine of the Gazebo simulator, but in the command shell of the laptop from
which you will connect to the Clover):

Before using the keys, you need to perform a number of actions to configure
access rights on the laptop:

one-time setting of access rights to user directories
chmod o-rwx $HOME
mkdir ~/.ssh
chmod g-rwx,o-rwx ~/.ssh
touch ~/.ssh/config ~/.ssh/known_hosts
chmod 600 ~/.ssh/config ~/.ssh/known_hosts

The .ssh directory in the user's home folder is the standard storage
location for both key pairs and SSH connection settings, so we prohibit
access to it by the Others group (outsiders). Modern Linux distributions
check access rights to files in the .ssh directory and may refuse
authentication by key pairs.

Generating an SSH key pair

Generating a pair of SSH keys in the ~/.ssh directory on the laptop:

ssh-keygen -f ~/.ssh/id_clover -C "SSH key for Clover" -N ""
Your identification has been saved in /home/galina/.ssh/id_clover
Your public key has been saved in /home/galina/.ssh/id_clover.pub

chmod 400 ~/.ssh/id_clover*

Copying SSH key to Raspberry Pi

After that connect to Raspberry Pi via WiFi and continue to enter commands on
the laptop to copy the key to the minicomputer:

ssh-copy-id -i ~/.ssh/id_clover.pub pi@192.168.11.1
pi@192.168.11.1's password: *********

As a result, the so-called public part of the key will be copied from the laptop to
the RPi microcomputer, and the private part will remain on the laptop. To verify the
connection without entering a password, use the command indicating the path
where the SSH key is located:

file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/wi%20fi.md

Using FS-A8S

271

ssh -i ~/.ssh/id_clover pi@192.168.11.1

If the terminal does not require you to enter a password to connect to the RPi,
then you did everything correctly and the SSH key pair works. Now you can type
the exit command from the SSH terminal to continue configuring the laptop:

pi@clover-3270:~ $ exit
logout
Connection to 192.168.11.1 closed.

galina@Thinkpad-X1:~/.ssh$

Configuring SSH connection to Clover
Now let's set up the SSH terminal in such a way that you don't have to enter the
path to the private key every time. This is done by editing the ~/.ssh/config file
on a laptop. Open the file in a text editor and add the following lines to the file (if
there is already some information there, then put them at the end of the file):

Host 192.168.11.1
 User pi
 IdentityFile ~/.ssh/id_clover
 PreferredAuthentications publickey,password
 PubkeyAuthentication yes
 PasswordAuthentication yes
 ConnectTimeout 1
 TCPKeepAlive yes
 ServerAliveInterval 2
 ServerAliveCountMax 3
 StrictHostKeyChecking no

This setting:

affects the operation of the SSH terminal when connected to a computer with
the IP address 192.168.11.1 ;
if the user name is not specified, the name pi will be used automatically;
the private key ~/.ssh/id_clover will be used automatically;
if the key does not fit for some reason (it was replaced on one laptop, but
forgot to replace it on another), then the SSH terminal will switch to password
authentication (settings PreferredAuthentications , PubkeyAuthentication ,
 PasswordAuthentication);
if communication with RPi cannot be established (WiFi is not yet connected),
then the SSH connection will not hang, but will be completed quickly (setting
 ConnectTimeout);
if the connection with RPi is suddenly severed, the SSH connection will not
hang, but will be completed quickly (settings TCPKeepAlive ,
 ServerAliveInterval , ServerAliveCountMax);
the unique SSH fingerprints of the RPi microcomputers mentioned above will
no longer be checked (the settings StrictHostKeyChecking).

This will solve a lot of inconveniences associated with using SSH connections.

Using FS-A8S

272

If you have several Raspberry Pi-based drones in your laboratory, and
several laptops, then you can generate SSH keys once, copy them to all
drones and spread them across all laptops, then you can quickly access
any of the drones from any laptop.

Now, to connect to RPi from a Linux terminal, you just need to type ssh 1[TAB]
[TAB][ENTER] and the ip address 192.168.11.1 will be automatically updated on
the command line, because the command shell uses addresses from the file
 ~/.ssh/config and is able to "guess" your intentions to connect to the Clover. By
pressing enter, you will instantly find yourself in the RPi terminal.

Graphical programs for Windows that support working with SSH keys,
which you can use: PuTTY and MobaXterm.

Copying files using SSH
To copy a file circle_flight.py from the laptop to the RPi to the user's home
folder pi , you can also use SSH. To do this, type the command in the command
shell:

first we specify 'what' we copy, and then 'where'
scp circle_flight.py 192.168.11.1

To copy output.avi file from the examples RPi' folder to the laptop, use a similar
command:

Remote command launch via SSH
To run a command at laptop on the RPi (that is, remotely), you can also use SSH.

Raspberry shutdown command:

ssh 192.168.11.1 'sudo shutdown now'

Example of a Python script' startup command:

In order to remotely start video recording, you can run the command:

after the ':' character (colon), you can specify the path on the remote compu
the path specified as './' means the current folder where the file will be co
scp 192.168.11.1:examples/output.avi ./

ssh -t 192.168.11.1 'ROS_HOSTNAME=`hostname`.local && . /opt/ros/noetic/setup.b

ssh -t 192.168.11.1 'ROS_HOSTNAME=`hostname`.local && . /opt/ros/noetic/setup.b

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://mobaxterm.mobatek.net/

Using FS-A8S

273

Using FS-A8S

274

Step-by-step guide on autonomous
flight with Clover 4

The following applies to image version 0.20 and up. See previous version
of the article for older images.

This manual contains links to other articles in which each of the topics addressed
is discussed in more detail. If you encounter difficulties while reading one of these
articles, it is recommended that you return to this manual, since many operations
here are described step by step and some unnecessary steps are skipped.

Raspberry Pi initial setup
Install Raspberry Pi and a camera on the drone according to the manual.
Download the system image here.
Burn the image to the microSD card.
Insert the card into Raspberry Pi.
Connect power to Raspberry Pi and wait for the Wi-Fi network to appear. To
do this, connect the Raspberry Pi to the computer via the microUSB cable.
On Raspberry Pi, the green LED should flash blink. It shows that Raspberry
Pi works properly.

Before connecting the Raspberry Pi to the computer via USB, you
need to remove the 5V power cable from Raspberry Pi. Otherwise,
there may be problems with power.

Connect to Wi-Fi and open the web interface (this article).

After the first power-up, the network appears with a delay. You need to wait
until the system is fully loaded. If the Clover network does not appear in the
list of networks for a long time, reopen the window with the network selection.
Then the list of networks will be updated.

Now if you have connected to the Clover's Wi-Fi network, it is
recommended to open the local version of this guide, otherwise the links
will not work.

Connect to Raspberry Pi via SSH.

Web access is the easiest way. Follow the instructions in the article SSH
Access.

You can change the name and password of the network if you want to. See
the article "[Network Settings] (network.md # change-password-or-ssid-
network-name)". The remaining operations with the network are unnecessary.

Use the nano editor to edit files. Instructions for working with nano.

https://github.com/CopterExpress/clover/blob/v0.19/docs/en/auto_setup.md
http://192.168.11.1/docs/ru/auto_setup.html

Using FS-A8S

275

In nano, you can only move the cursor with the arrow keys on the
keyboard.

Reboot Raspberry Pi:

sudo reboot

The connection will temporary close, a new network will be created and you
will need to reconnect to it.

Make sure that the camera is working correctly. Follow the link
http://192.168.11.1:8080 and click image_raw .

For more information read "Viewing images from cameras".

If the image is blurry, you need to focus the lens. To do this, twist the lens in
one or the other direction. Continue to twist until the image becomes clear.

The red LED on the camera should be lit: it means that the camera is
currently capturing image. If the LED does not light: either the camera
is connected incorrectly, or the operating system did not boot yet, or
there is an error in settings.

Basic commands
You will need the basic Linux commands, as well as special Clover commands, to
work efficiently in the system.

Show list of files and folders:

ls

Go to certain directory by entering the path too it
(catkin_ws/src/clover/clover/launch/):

cd catkin_ws/src/clover/clover/launch/

Go to home directory:

cd

Open the file file.py :

nano file.py

Open the file clover.launch by entering the full path to it (it works even if you're in
a different directory):

nano ~/catkin_ws/src/clover/clover/launch/clover.launch

http://192.168.11.1:8080/

Using FS-A8S

276

Save file (press sequentially):

Ctrl+X; Y; Enter

Delete a file or folder called name (WARNING: the operation will not request
confirmation. Be careful!):

rm -rf name

Make a new directory called myfolder :

mkdir myfolder

Raspberry Pi complete reboot:

sudo reboot

Reboot only the clover service:

sudo systemctl restart clover

Perform selfcheck:

rosrun clover selfcheck.py

Stop a program:

Ctrl+C

Start a program myprogram.py using Python:

python3 myprogram.py

Journal of the events related to clover package. Scroll the list by pressing Enter
or Ctrl+V (scrolls faster):

journalctl -u clover

Open the sudoers file with super user rights (this particular file doesn't open
without sudo. You can use sudo to open other locked files or run programs that
require super user rights):

sudo nano /etc/sudoers

Setting Raspberry Pi for autonomous
flight

Using FS-A8S

277

Most of the parameters for autonomous flight are located in the following
directory: ~/catkin_ws/src/clover/clover/launch/ .

Enter the directory:

cd ~/catkin_ws/src/clover/clover/launch/

The ~ symbol stands for home directory of your user. If you are already in
the directory, you can go with just the command:

cd catkin_ws/src/clover/clover/launch/

Tab can automatically complete the names of files, folders or
commands. You need to start entering the desired name and press
Tab. If there are no conflicts, the name will be auto completed. For
example, to quickly enter the path to the
 catkin_ws/src/clover/clover/launch/ directory, after entering cd , you
can start typing the following key combination: c-Tab-s-Tab-c-Tab-c-
Tab-l-Tab . This way you can save a lot of time when writing a long
command, and also avoid possible mistakes in writing the path.

In this folder you need to configure three files:

 clover.launch

 aruco.launch

 main_camera.launch

Open the file clover.launch :

nano clover.launch

You must be in the directory in which the file is located. If you are in other
directory, you can open the file by writing the full path to it:

nano ~/catkin_ws/src/clover/clover/launch/clover.launch

If two users are editing a file at the same time, or if previously the file was
closed incorrectly, nano will not display the file contents, it will ask for
permission to display the file. To grant permission, press Y.

If the content of a file is still empty, you may have entered the file name
incorrectly. You need to pay attention to the extension. If you entered a wrong
name or extension, nano will create a new empty file named this way, which
is undesirable. Such file should be deleted.

Find the following line in clover.launch file:

<arg name="aruco" default="false"/>

Replace false with true :

Using FS-A8S

278

<arg name="aruco" default="true"/>.

This will activate the ArUco marker detection module.

Open the file aruco.launch :

 nano aruco.launch

Here you need to activate some parameters. Go to the article for more detail.

Here is what you should get:

<arg name="aruco_detect" default="true"/>
<arg name="aruco_map" default="true"/>
<arg name="aruco_vpe" default="true"/>`

Generate the ArUco markers field. See the article Map-based navigation with
ArUco markers for details. To generate markers, you need to enter a
command with specific values.

Here is the example generating command where:

marker length = 0.335 m (length)
10 columns (x)
10 rows (y)
distance between markers on the x axis = 1 m (dist_x)
distance between markers on the y axis = 1 m (dist_y)
the first marker's ID = 0 (first)
the marker map name is default: map.txt
the marker map numbering is from the top left corner (key --top-left)

In most maps, numbering starts with a zero marker. Also, in most cases,
numbering starts from the upper left corner, so when generating, it is very
important to enter the key --top-left .

If you choose a different name for your ArUco map, you also need to
change it in the aruco.launch . Find the line <param name="map"
value="$(find aruco_pose)/map/map.txt"/> and replace map.txt with
your map name.

Edit the main_camera.launch for setting up the camera:

Read more in the article. "Camera orientation".

In this file, you need to edit the line with the camera location parameters. The
line looks like this:

rosrun aruco_pose genmap.py 0.335 10 10 1 1 0 > ~/catkin_ws/src/clover/aru

<node pkg="tf2_ros" type="static_transform_publisher" name="main_camera_fr

Using FS-A8S

279

In the file you will find many lines similar to this, but most of them are
commented out (i.e. not readable) and only one is uncommented. These are
pre-configured settings from which you can choose the one you need.

Comment in XML is <!-- at the beginning of a line and --> at the end of a
line. An example of a commented line:

An example of an uncommented line (the line will be read by the program):

The writing above each of these lines indicates which camera position the
line corresponds to. If the camera cable goes forward relative to the drone,
and the camera is pointing down, you need to select the following setting:

To select the desired setting, you need to uncomment the corresponding line,
and comment out another similar line so that there are no conflicts.

Save changes. Press sequentially:

Ctrl+x; y; Enter

Restart the clover service:

sudo systemctl restart clover

Setting the flight controller
Flash the flight controller with modified firmware. You can download it here in
the section "Flashing the flight controller".

Instructions for flashing and calibrating the flight controller are in the same
article.

Don't forget to choose the downloaded firmware when you flash the flight
controller.

Connecting the flight controller with
Raspberry Pi

<!--<node pkg="tf2_ros" type="static_transform_publisher" name="main_camer

<node pkg="tf2_ros" type="static_transform_publisher" name="main_camera_fr

<!-- camera is oriented downward, camera cable goes forward [option 2] --

Using FS-A8S

280

Connect the Raspberry Pi and the Pixracer via the microUSB cable. The
cable should be tightly fastened and passed through the bottom of the drone
to not get into the propellers.

Connect remotely to the flight controller through QGroundControl.

All the necessary settings for that are already set in Clover. Now you need to
create a new connection in QGroundControl. Use the settings from this
article.

Remote controller setup
Flight modes setup is described in the article "Flight modes".

Set channel 5 to SwC switch; channel 5 to SwA switch. Or you can use any
other switches you like.

Clover selfcheck
Perform selfcheck when you have set up your drone or when you have faced
problems. The selfcheck process is described in the article "Automated self
checks"

Run the command:

rosrun clover selfcheck.py

Writing a program
The article "Simple OFFBOARD" describes working with simple_offboard
module that helps to easily program a drone. All the basic flight functions are
described in this article, as well as code snippets.

Copy the Python code example from "The use of Python language" section
and paste in code editor (e.g. Visual Studio Code, PyCharm, Sublime Text,
Notepad++)
Save the document with .py extension for highlighting the code.
Add flight logic. The examples of such functions are given in the article. You
need to call functions for taking off, flying to point and landing.
Taking off.

Use navigate function to take off. Add this line at the bottom of the program.

navigate(x=0, y=0, z=1.5, speed=0.5, frame_id='body', auto_arm=True)

Add this line to add delay to the program. It gives you time for doing
previously called operation.

rospy.sleep(3)

Using FS-A8S

281

It is important to allocate time to execute the navigate function, otherwise
the drone, without waiting for the previous command to execute, will
immediately proceed to the next. For allocating time, use the rospy.sleep
() command. The time in seconds is indicated in parentheses. The
function rospy.sleep () refers to the previous navigate command, and
not to the next. This is the time we give to fly to the point indicated in
previous navigate (the one that is just above the rospy.sleep ()).

Set the drone's position in the marker field coordinate system.

For doing that you need to call a navigate , set the coordinates and
coordinate system (frame_id):

navigate(x=1, y=1, z=1.5, speed=1, frame_id='aruco_map')

As the result you get:

navigate(x=0, y=0, z=1.5, speed=0.5, frame_id='body', auto_arm=True)
rospy.sleep(3)
navigate(x=1, y=1, z=1.5, speed=1, frame_id='aruco_map')
rospy.sleep(5)

Note that the parameter auto_arm=True is only set once on the first
takeoff. In other cases it should not be set True because it prevents
overtaking the control.

If you want to add other points for the drone's mission, add another
 navigate and rospy.sleep() . Calculate time individually for each point,
depending on the speed of flight and the distance between two points.

If you want to add the points with coordinates (3, 3, 1.5):

navigate(x=3, y=3, z=1.5, speed=1, frame_id=‘aruco_map’)
rospy.sleep(3)

Coordinates should not exceed the size of your field. If the field is 4x4
meters in size, the maximum coordinate value is 4.

After reaching all of the points you need to land. The following line is placed
at the end of the program:

land()

Writing the program to the drone
The easiest way to send the program is to copy the content of the program, create
a new file in the command line and paste the program text into the file.

To create the file myprogram.py , run the command:

Using FS-A8S

282

nano myprogram.py

You can select any name you want, but it is not recommended to use spaces
and special characters. In addition, the program extension should always end
with .py

Paste text in the input field. If you use Butterfly web access on Windows or
Linux:

Ctrl+Shift+V

On Mac you can click Cmd+v .

Save the file:

Ctrl+x; Y; Enter

Starting the program
It is necessary to carefully prepare the drone, remote control and program
before you fly autonomously. Run selfcheck.py . Make sure the drone flies
well in manual mode.
Turn on the drone and wait for the system to boot. A red light on the camera
means that the system has booted.
Check drone's flight in POSCTL mode.
To do this, take off above the markers in STABILIZED mode and turn the
SwC switch (or the one you have set) to the lower position - POSCTL mode.

You need to be ready to immediately switch back to STABILIZED mode
if the drone gets out of control!

Set the left stick (throttle) to the middle position. The drone has to hover in
place. If so, you can land the drone and proceed to the next step. If not, you
need to find the reason for the problem.

Before you start your program, set the SwC switch to the middle position. It
will help you to take control of the drone. For taking control, switch your mode
switch (SwC by default) to any other flight mode.

Set the left stick (throttle) to the middle position so that in case of taking
control the drone won't fall down.

Run the program:

python3 my_program.py

After completion of the program , the drone can land incorrectly and
continue to fly over the floor. In this case, you need to intercept control.

Using FS-A8S

283

If you want to stop the program before it ends, press Ctrl+C . If didn't work,
press Ctrl+Z , but it is not recommended.

Using FS-A8S

284

Hostname
The following applies to image version 0.20 and up. See previous version
of the article for older images.

By default the hostname of the Clover drone is set to clover-xxxx , where xxxx
are random numbers. These numbers are the same as in the Wi-Fi SSID.

Thus, Clover is accessible on machines that support mDNS as clover-
xxxx.local . You can use this name to access Clover over SSH:

ssh pi@clover-xxxx.local

Also, this name can be used in place of IP-address to open Clover web pages in
browser, accessing ROS master, etc.

Changing hostname
In some situations it is necessary to change Clover's hostname. You can use the
 hostnamectl utility for that:

sudo hostnamectl set-hostname newname

Where newname is the new name of the machine. hostnamectl utility will change
the name in /etc/hostname file.

You should also put the new name to /etc/hosts file:

127.0.1.1 newname newname.local

Setting newname.local is necessary to allow ROS to resolve this name in
situations where all the network interfaces are down (when Wi-Fi is turned off or
disconnected).

Changing the hostname does not affect the Wi-Fi SSID (and vice versa,
changing the Wi-Fi SSID won't affect the hostname).

https://github.com/CopterExpress/clover/blob/v0.19/docs/en/hostname.md

Using FS-A8S

285

PX4 Simulation
This article is about running a standalone PX4 simulation with a generic
quadcopter and is outdated. Consider using our configuration for a more
Clover-like experience.

Main article: https://dev.px4.io/en/simulation/

PX4 simulation is possible in Linux and macOS with the use of physical
environment simulation systems jMAVSim and the Gazebo.

jMAVSim is a lightweight environment intended only for testing multi-rotor aircraft
systems; Gazebo is a versatile environment for all types of robots.

Launching PX4 SITL
1. Clone repository from PX4.

git clone https://github.com/PX4/Firmware.git
cd Firmware

jMAVSim
Main article: https://dev.px4.io/en/simulation/jmavsim.html

For simulation using the jMAVSim lightweight environment, use the following
command:

make posix_sitl_default jmavsim

To use the LPE position calculation module instead of EKF2, use:

make posix_sitl_lpe jmavsim

Gazebo
Main article: https://dev.px4.io/en/simulation/gazebo.html

To get started, install Gazebo 7. On a Mac:

brew install gazebo7

On Linux (Debian):

sudo apt-get install gazebo7 libgazebo7-dev

https://dev.px4.io/en/simulation/
https://docs.px4.io/master/en/simulation/jmavsim.html
http://gazebosim.org/
https://dev.px4.io/en/simulation/jmavsim.html
https://dev.px4.io/en/simulation/gazebo.html

Using FS-A8S

286

Start simulation from the Firmware folder:

make posix_sitl_default gazebo

You can run a simulation in headless mode (without a window client). To do this,
use the following command:

HEADLESS=1 make posix_sitl_default gazebo

Connection
QGroundControl will automatically connect to the running simulation on startup.
The operation will be the same as, as in the case of a real flight controller.

To connect MAVROS to the simulation, use the UDP Protocol, a local IP address,
and port 14557, for example:

roslaunch mavros px4.launch fcu_url:=udp://@127.0.0.1:14557

Using FS-A8S

287

Navigation using vertical ArUco-
markers
The algorithm of the navigation through visual ArUco-markers, that was
implemented in the Clever image, supports the flexible configuration of the
markers in area. It allows you to place them on any surface, at any angle.

Installing the vertical camera mount
For a better recognition of the markers, you need to set the camera vertically so
that the lens is pointed parallel to the horizon.

The configuration file allows you to configure the location of the camera in
area relative to the copter in any way. For your convenience, we will review
the option of installing the camera at an angle of 90 degrees to the horizon
in the direction of the copter's nose.

Camera mount, 3D printing

Print the camera mount.

Install the mount in a convenient location, so that the camera has a minimum
number of unnecessary objects (protection, legs, propellers, beams) — all of it will
negatively affect the recognition of the markers.

Setting the camera transform
To set the camera position at the desired angle, open the file main_camera.launch ,
located in ~/catkin_ws/src/clover/clover/launch/ .

nano ~/catkin_ws/src/clover/clover/launch/main_camera.launch

In the parameters direction_x , direction_y , set empty values manually or
enter the following lines:

Edit one of the configuration lines or add the line shown bellow:

sed -i "/direction_z/s/default=\".*\"/default=\"\"/" /home/pi/catkin_ws/src/clo
sed -i "/direction_y/s/default=\".*\"/default=\"\"/" /home/pi/catkin_ws/src/clo

<node pkg="tf2_ros" type="static_transform_publisher" name="main_camera_frame"

Using FS-A8S

288

. Only one camera configuration can be used at a time. If you insert the line
above, don't forget to comment the currently active one. The syntax
highlighting system will help you determine that — the active line will be
highlighted in a different color than the comments. To comment, add the
 <!-- and --> symbols at the beginning and the end respectively.

If you are using the marker map, where the markers have equal distances along
the x and y axes, you can use script for creating markers map gen_map.py .
Otherwise, you will need to set them manually. To do this, go to the directory
 map_name.txt and create a map file. Fill out your map according to the map
syntax. Here is an example of a marker map with a random marker location:

. When filling out the map, select one of the markers as the origin, and
measure the distance to all other markers relative to it. If all your
parameters are oriented same way, you can choose not to specify all 8
parameters, but only the first 5: the marker index, size, and its location in
space along the x, y, and z axes, respectively.

106 0.33 0 0 0
103 0.33 1.53 0.23 0
153 0.40 -0.56 1.36 0

After you fill out the map, you need to apply it. To do it, edit the file aruco.launch ,
located in ~/catkin_ws/src/clover/clover/launch/ . Change the line <param
name="map" value="$(find aruco_pose)/map/map_name.txt"/> , where map_name.txt
is the name of your map file.

If you are using markers that are not linked to horizontal surfaces (floor, ceiling),
you must blank the placement argument in the same file:

<arg name="placement" default=""/>

After all the settings, call sudo systemctl restart clover to restart the clover
service.

Using FS-A8S

289

Configuring the PID coefficients
In practice, the most common problem is the presence of rapid oscillations that
occur due to the too large values of parameter P. In this situation, you should
decrease this value (all parameters are set experimentally, based on copter
behavior).

It is also worth checking that the oscillations do not occur during sharp descent
(otherwise, reduce P). Slow copter rocking from side to side while trying to
maintain the predetermined position is related to excessive value I. If the copter
swings during movement, the value should be increased. If the copter keeps the
preset position poorly, you should increase the D parameter; it the D parameter is
too high or too low, oscillations occur.

Adjustment of the D parameter should start with the minimum values, which
are 3 – 4 times lower than default values, if any.

The Rate Pitch and Rate Roll parameters should be the same.

YAW parameters should be changed individually, according to the above
instruction (usually the yaw doesn't require serious adjustment, you may leave it
default).

Using FS-A8S

290

Model files for parts
This page contains models and drawings of some of the drone parts. They can be
used for 3D printing and/or laser cutting replacement parts.

Clover 4.2

Milling

Using FS-A8S

291

Preview Part Files

Deck mount.
Function: Deck
for installing
battery and
Raspberry Pi
Material:
Monolithic
polycarbonate
2mm.
Quantity: 1
pcs.

 Deck Mount.dxf
 Deck Mount.ipt
 Deck Mount.stp

Deck mount
small.
Function: Deck
for mounting
FPV cameras
and mounting
stiffening
plates.
Material:
Monolithic
polycarbonate
2mm.
Quantity: 1
pcs.

 Deck Mount Small.dxf
 Deck Mount Small.ipt
 Deck Mount Small.stp

Grab deck.
Function: Deck
for installing
grippers and
external
peripherals
(camera,
rangefinder).
Material:
Monolithic
polycarbonate
2mm.
Quantity: 1
pcs.

 Grab Deck.dxf
 Grab Deck.ipt
 Grab Deck.stp

LED mount
plate.
Function:
Fixing the LED
strip.
Material:
Monolithic
polycarbonate
2mm.
Quantity: 1
pcs.

 LED mount plate.dxf
 LED mount plate.ipt
 LED mount plate.stp

https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Deck%20Mount/Deck%20Mount.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Deck%20Mount/Deck%20Mount.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Deck%20Mount/Deck%20Mount.stp
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Deck%20Mount%20Small/Deck%20Mount%20Small.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Deck%20Mount%20Small/Deck%20Mount%20Small.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Deck%20Mount%20Small/Deck%20Mount%20Small.stp
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Grab%20Deck/Grab%20Deck.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Grab%20Deck/Grab%20Deck.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Grab%20Deck/Grab%20Deck.stp
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/LED%20mount%20plate/LED%20mount%20plate.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/LED%20mount%20plate/LED%20mount%20plate.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/LED%20mount%20plate/LED%20mount%20plate.stp

Using FS-A8S

292

Prop guard.
Function:
Prevent
damage of
propellers.
Material:
Monolithic
polycarbonate
2mm.
Quantity: 4
pcs.

 Prop Guard.dxf
 Prop Guard.ipt
 Prop Guard.stp

Prop guard
mount.
Function: Arc
for securing
the guard.
Material:
Monolithic
polycarbonate
2mm.
Quantity: 2
pcs.

 Prop Guard Mount.dxf
 Prop Guard Mount.ipt
 Prop Guard Mount.stp

Small leg.
Function:
Standard
footing
element.
Material:
Monolithic
polycarbonate
2mm.
Quantity: 2
pcs.

 Small Leg.dxf
 Small Leg.ipt
 Small Leg.stp

Arm.
Function:
motor mount.
Material:
carbon fibre
2mm.
Quantity: 4
pcs.

 Arm.dxf
 Arm.ipt
 Arm.stp

Central plate.
Function: a
place to mount
PCBs.
Material:
carbon fibre
2mm.
Quantity: 1 pc.

 Central Plate.dxf
 Central Plate.ipt
 Central Plate.stp

https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Prop%20Guard/Prop%20Guard.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Prop%20Guard/Prop%20Guard.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Prop%20Guard/Prop%20Guard.stp
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Prop%20Guard%20Mount/Prop%20Guard%20Mount.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Prop%20Guard%20Mount/Prop%20Guard%20Mount.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Prop%20Guard%20Mount/Prop%20Guard%20Mount.stp
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Small%20Leg/Small%20Leg.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Small%20Leg/Small%20Leg.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Small%20Leg/Small%20Leg.stp
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Arm/Arm.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Arm/Arm.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Arm/Arm.stp
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Central%20Plate/Central%20Plate.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Central%20Plate/Central%20Plate.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Central%20Plate/Central%20Plate.stp

Using FS-A8S

293

Small deck
mount.
Function:
holds stiffener
plates.
Material:
carbon fibre
2mm.
Quantity: 1 pc.

 Deck Mount Small.dxf
 Deck Mount Small.ipt
 Deck Mount Small.stp

Stiffener
plate.
Function:
frame stiffener.
Material:
carbon fibre
2mm.
Quantity: 4
pcs.

 Stiffener Plate.dxf
 Stiffener Plate.ipt
 Stiffener Plate.stp

Clover 4.2 WorldSkills

Milling

Preview Part Files

Big leg.
 Function:

Extended
footing
element.

 Material:
Monolithic
polycarbonate
2mm.

 Quantity: 2
pcs.

 Big Leg.dxf
 Big Leg.ipt
 Big Leg.stp

Grip spacer.
 Function:

spacer for the
gripper
plates.
Material:
monolithic
polycarbonate
2mm.

 Quantity: 1
pcs.

 Grab Spacer.dxf
 Grab Spacer.ipt
 Grab Spacer.stp

https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Deck%20Mount%20Small/Deck%20Mount%20Small.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Deck%20Mount%20Small/Deck%20Mount%20Small.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Deck%20Mount%20Small/Deck%20Mount%20Small.stp
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Stiffener%20Plate/Stiffener%20Plate.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Stiffener%20Plate/Stiffener%20Plate.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/Carbon/Stiffener%20Plate/Stiffener%20Plate.stp
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Big%20Leg/Big%20Leg.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Big%20Leg/Big%20Leg.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Big%20Leg/Big%20Leg.stp
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Grab%20Spacer/Grab%20Spacer.dxf
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Grab%20Spacer/Grab%20Spacer.ipt
https://github.com/CopterExpress/hardware/raw/master/COEX%20Clover/4.2/PC/Grab%20Spacer/Grab%20Spacer.stp

Using FS-A8S

294

3D print

Mechanical gripper

Left claw: grip_left.stl .
Right claw: grip_right.stl .

Material: SBS Glass. Infill: 100%. Quantity: 1 pcs.

Clover 4

3D print

Battery holder – battery_holder.stl . Filament: PLA/ABS/SBS. Infill: 50% or
more.

Laser cut

Reinforcing Pad – reinforcing_pad.dxf

Contributed models for Clover 4
Reinforced mounting plate for Jetson Nano and additional equipment by
Vyacheslav Buzov.

Laser cut

Reinforced plate base (for Jetson Nano) – reinforced_plate_base.dxf
Reinforced plate rib – reinforced_plate_rib.dxf (x2)
Camera pad for reinforced plate – reinforced_plate_camera_pad.dxf

Clover 3

3D print

Camera case – camera_case.stl . Filament: PLA/ABS/SBS.
Camera mount – camera_mount.stl . Filament: PLA/ABS/SBS.
Camera plate – camera_plate.stl . Filament: PLA/ABS/SBS.
Mounting deck small – mounting_deck_small.stl . Filament: PLA/ABS/SBS.

Laser cut

Big leg – big_leg.dxf .
Deck mount – deck.dxf .
Prop guard – prop_guard.dxf .
Prop guard fork – prop_guard_mount.dxf .
Spacer – grab_spacer.dxf .
Leg – leg.dxf .

https://github.com/CopterExpress/clover/raw/master/docs/assets/stl/grip_left.stl
https://github.com/CopterExpress/clover/raw/master/docs/assets/stl/grip_right.stl
https://github.com/CopterExpress/clover/raw/master/docs/assets/stl/battery_holder.stl
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/reinforcing_pad.dxf
https://t.me/buzyakabarbuzyaka
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/reinforced_plate_base.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/reinforced_plate_rib.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/reinforced_plate_camera_pad.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/stl/camera_case.stl
https://github.com/CopterExpress/clover/raw/master/docs/assets/stl/camera_mount.stl
https://github.com/CopterExpress/clover/raw/master/docs/assets/stl/camera_plate.stl
https://github.com/CopterExpress/clover/raw/master/docs/assets/stl/mounting_deck_small.stl
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/big_leg.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/deck.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/prop_guard.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/prop_guard_mount.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/grab_spacer.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/leg.dxf

Using FS-A8S

295

LED mount plate – led_mount_plate.dxf .
Mounting deck small – mounting_deck_small.dxf .

Milling

Central plate – central_plate.dxf .
Arm – arm.dxf .

https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/led_mount_plate.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/mounting_deck_small.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/central_plate.dxf
https://github.com/CopterExpress/clover/raw/master/docs/assets/dxf/arm.dxf

Using FS-A8S

296

ROS Melodic package installation and
setup
In order to use tools such as rqt, rviz and others as well as running the simulator
(SITL), you will need to install and setup ROS package

For more details on installation refer to the main article.

ROS Melodic installation on Ubuntu
To find the correct package version, you will need to change the settings of your
repositories. Go to "Software and updates" and enable restricted , universe
and multiverse .

Set up your system so that software form packages.ros.org can be installed :

Configure access keys in your system for correct download:

Make sure that your packages are up to date:

sudo apt-get update

Now you can install the ROS package itself.

If you plan to use ROS together with the simulator (also includes tools such
as rqt, rviz and others):

 sudo apt-get install ros-melodic-desktop-full

If you plan to use ROS exclusively for tools rqt, rviz etc.:

 sudo apt-get install ros-melodic-desktop

After the package has installed, initialize rosdep . Package rosdep will allow to
easily install dependencies for the source files that you whish to compile. Running
some essential components of ROS will as well require this package.

sudo rosdep init
rosdep update

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) mai

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key C1C

http://wiki.ros.org/melodic/Installation/Ubuntu

Using FS-A8S

297

If you are not comfortable with entering environment variables manually each
time, you may configure it in a way that it add itself in your bash session on every
new shell startup:

echo "source /opt/ros/melodic/setup.bash" >> ~/.bashrc
source ~/.bashrc

If you whish to install any additional packages for your ROS Melodic simply use:

sudo apt-get install ros-melodic-PACKAGE

Using FS-A8S

298

Camera calibration
Camera calibration can significantly improve the quality of nodes related to
computer vision: ArUco markers detection and optical flow.

Camera calibration process allows to define the parameters reflecting the specific
lens installed. These parameters include focal lengths, principal point (which
depends on camera lens placement regarding the centre), distortion coefficient D.
You can read more about camera distortion model used in the OpenCV
documentation.

There are several tools allowing to calibrate the camera and store calculated
parameters into the system. Usually they use calibration images, "chessboards"
or combinations of "chessboards" and ArUco-marker grids (ChArUco).

camera_calibration ROS-package
Main tutorial:
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration.

In order to calibrate the camera with the camera_calibration ROS-package you
need a computer with OS GNU/Linux and ROS Noetic installed.

1. Using the Terminal, install camera_calibration package to your computer:

 sudo apt-get install ros-noetic-camera-calibration

2. Download the chessboard – chessboard.pdf. Print the chessboard on paper
or open it on the computer screen.

3. Connect to the Clover Wi-Fi network.

4. Run camera calibration (on your computer):

https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html
https://docs.opencv.org/3.4/df/d4a/tutorial_charuco_detection.html
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
http://wiki.ros.org/noetic/Installation/Ubuntu
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/chessboard.pdf

Using FS-A8S

299

Change the value 0.108 to actual size a square on the chessboard in
metres. For example, value 0.03 corresponds to 3 cm.

5. When the calibration program starts, move the drone so the calibration board
is observed from different angles:

Place the chessboard in the left, right, top and bottom part of the frame.
Rotate the chessboard around all 3 axes.
Move camera toward and away from the chessboard, so that it is
observed from different distance.

6. Click the CALIBRATE button, when it's active. The process of calculation will
take several minutes.

When the calculation is done, you'll see calculated parameters in the
terminal. The corrected camera image view will be displayed as well. If
calibration was successful all straight lines will remain straight on the image
displayed.

7. Click the COMMIT button to store calculated calibration parameters. The
result will be stored in the main Clover camera calibration file:
 /home/pi/catkin_ws/src/clover/clover/camera_info/fisheye_cam_320.yaml .

ROS_MASTER_URI=http://192.168.11.1:11311 rosrun camera_calibration camerac

Using FS-A8S

300

Creating a virtual network ZeroTier
One and connecting to it

Creating and configuring a ZeroTier
network

1. Go to ZeroTier website.

2. Sign up on ZeroTier.

3. Go to your account.

4. Click on the Create A Network.

5. After that, you will see the network you created, its ID and name. Click on the
network to configure it.

https://www.zerotier.com/

Using FS-A8S

301

6. In the window that appears you can change the network name and
connection privacy.

7. Scroll down to the Members column. It will say that there are no users on the
network.

8. Devices connected to the network will be displayed in this column. To allow
them to connect to the network, activate the Auth? checkbox. The connected
device will automatically be given an internal IP address, which will then be
used to communicate with this device.

Using FS-A8S

302

specify names for new devices, it will help you distinguish them from
each other in the future.

9. Repeat the last step for all the devices that you want to connect.

ZeroTier network supports up to 50 users simultaneously for free use.

Setup on Windows

Installing the app

1. Go to the ZeroTier website.

2. Click on the Windows icon.

3. Download and run the ZeroTier One.msi file.

Using FS-A8S

303

Network connection

1. Run ZeroTier One.

2. Click on the ZeroTier One icon in the taskbar.

3. Click on the Join Network... to connect to the network.

4. In the window that appears, enter your network ID and click Join.

Using FS-A8S

304

5. Allow using the new network.

Setup on iOS

Installing the app

1. Go to the ZeroTier website.

2. Click on the iOS icon.

3. Install the ZeroTier One app.

Network connection

1. Run ZeroTier One app.

2. Click on + to add a new connection.

Using FS-A8S

305

3. Confirm the privacy policy.

Using FS-A8S

306

4. Enter your network ID and click Add Network.

Using FS-A8S

307

5. Confirm adding the new VPN configuration.

6. Connect to the VPN network by sliding the network activation slider.

Using FS-A8S

308

Using FS-A8S

309

Setup on Linux (PC, Raspberry Pi)

Installing the app

1. Open the console by pressing the keyboard shortcut ctrl + alt + t or type
terminal in the program search bar.

2. Enter the ZeroTier installation command.

 curl -s https://install.zerotier.com | sudo bash

Network connection

1. Open the console.

2. Enter the command sudo zerotier-cli join network-id , where network-id
is your network ID.

3. If the connection is successful, the corresponding message will be displayed
in the console.

Installing and configuring on macOS

Installing the app

1. Go to the ZeroTier website.

Using FS-A8S

310

2. Click on the macOS icon.

3. Download and run ZeroTier One.pkg file.

4. Install the ZeroTier One app.

Network connection

1. Run ZeroTier One app.

2. Click on the ZeroTier One icon in the taskbar .

3. In the window that appears, click on Join Network....

4. In the Enter Network ID field, enter your network ID.

Using FS-A8S

311

Connecting to the copter
1. Make sure that ZeroTier is working and connected to the network on the

drone and control device. To do this, make sure that these have an Online
status.

2. Make sure that all devices have local IP addresses - Managed IPs.

3. Open GQC and in the Comm Links tab add a TCP connection specifying the
IP of the drone. Read more about remote connection here.

Using FS-A8S

312

Multi-copter control with 4G
communication
The fourth generation mobile communication is a convenient tool for transmitting
and receiving information at high speed. Nowadays, the coverage area of mobile
operators allows to connect to the Internet at high speed from almost any point.

To transfer any data from your drone to the ground control station (e.g.,
QGroundControl) and back, you need to set up your own VPN network.

Connecting 4G modem to Raspberry Pi
Connect a 4G modem with SIM card to the USB port of your Raspberry Pi.

When connected, some modems recognize in the system as a network card,
without any additional settings.

4G modem example: USB 4G Huawei E3372H

But some other popular modems, for instance Quectel EP06, do not start the
internet connection automatic. In this case you should use utilities like qmi-
network and udhcpc . To install this utilities enter the appropriate command line:

sudo apt install libqmi-utils udhcpc

Next to start the internet connection proceed following:

Using FS-A8S

313

sudo ip link set wwan0 down
echo 'Y' | sudo tee /sys/class/net/wwan0/qmi/raw_ip
sudo ip link set wwan0 up
sudo qmi-network /dev/cdc-wdm0 start
sudo udhcpc -q -f -i wwan0

Reed more about it in this article.

To check the internet connection enter the appropriate command line:

ping -I wwan0 -c 5 8.8.8.8

To check the speed of the internet connection you could use the speedtest
utility:

sudo apt install speedtest-cli
speedtest

Connecting Raspberry Pi to the VPN
Create the VPN network keys to connect Raspberry Pi and the ground station.

To connect Raspberry Pi to your network, install the OpenVPN package:

sudo apt-get install openvpn

Move your keys to the /etc/openvpn/client directory. For convenience, use the
graphical SFTP data transfer interface, for example: WinSCP, FileZilla, etc.

To enable the client mode, you must activate the keys you have transmitted. Keys
can be generated in various formats, for example: .ovpn , .conf . The key or
configuration used on your copter should be strictly in .conf format.

Initialize the service that uses your keys to connect in client mode:

sudo systemctl enable openvpn-client@config-name

where config-name is the name of your configuration file.

If everything is done correctly, every time the system restarts, the service client
will automatically connect to your network.

Before starting work, do not forget to set up and enable VPN connection on
your PC.

Alternatively we recommend to use the ZeroTier VPN-service.

https://docs.sixfab.com/page/setting-up-a-data-connection-over-qmi-interface-using-libqmi

Using FS-A8S

314

Copter control via QGroundControl
We suggest using the UDP transfer protocol to control the drone, which
provides less delay, at the cost of no guarantee of receiving the package,
which is very important during the flight.

Make sure your copter and ground station are connected to your network.

To do this, you can use the command ip addr . The result will be a numbered list
of the active networks enabled on your device. Note the connection with the prefix
tun and the IP address you specify; if it is present in your list, your copter is
connected to the network.

Set up the GCS connection to your drone using the same protocol that is used for
your VPN network. The steps are the same as in the Wi-Fi connection article. We
recommend using UDP due to lower latency.

If you have a connection to your drone, connect some joystick to your PC. You
may use an RC transmitter with a USB port, such as FlySky-i6X, Taranis x7, etc.,
as well as any analog joystick that is recognized by the system.

When the joystick is recognized by the system, the Joystick item will appear in the
Vehicle Setup column. If it is highlighted in red, then calibration is required.

To calibrate the joystick, press the Calibrate button in the Joystick tab and follow
the instructions for the sticks position on the left side of the window.

After successful calibration, flight modes must be set up. To do this, switch the
required toggle switches several times. During switching, you will see the virtual
channels on which the toggle switches operate. One of the channels will be
highlighted in the active position.

Using FS-A8S

315

When selecting the joystick, check the number of working channels and its
support in QGroundControl (which uses SDL2, so any joystick supported
there should be fine). There are joysticks that support only 4 channels,
which are not convenient for this type of control.

If changes to stick positions are reflected in the QGroundControl window, all you
have to do is apply a parameter that specifies that the drone is controlled by the
joystick, not by the RC:

 COM_RC_IN_MODE - Joystick/No RC Checks

Since mobile communication is not always stable, it is recommended to increase
the timeout for control signal loss to 5 seconds.

The drone is ready to fly!

If the copter does not arm when you move the left stick to the bottom right
corner, set the Arm/Disarm command to one of the switches.

Using FS-A8S

316

Streaming video from the camera to
QGroundControl
You can stream video from almost any camera connected to your Raspberry Pi.
You will need to install or build the gst-rtsp-launch package:

sudo apt update
sudo apt install gst-rtsp-launch

To start the transfer of images, you must enter the appropriate command line:

This command line contains the parameters of the video stream, such as the
source video device, framerate, image height/width, encoding, etc. You can see
more examples in the gst-rtsp-launch repository.

A Raspberry Pi camera device /dev/video0 could be used by clover
systemd service. In this case gst-rtsp-launch will not get an access to the
device. For stop the clover run command sudo systemctl stop clover .
Also you could stream from a USB-camera, for this change the source
video device to /dev/video1 .

Make sure the stream by the address rtsp://192.168.11.1:8554/video (the IP-
address of your Raspberry Pi could be different) is received and shown in
QGroundControl.

Starting video stream automatically
Create a file and add your video stream command line:

nano script_name.sh

In order to run the file, you have to mark it as executable.

gst-rtsp-launch "(v4l2src device=/dev/video0 ! video/x-raw,framerate=30/1,widt

https://github.com/sfalexrog/gst-rtsp-launch
https://github.com/sfalexrog/gst-rtsp-launch/blob/master/README.md

Using FS-A8S

317

chmod a+x script_name.sh

You can use systemd to launch this script every time on system startup. Create
the qgc_video.service file in the /etc/systemd/system directory:

sudo nano /etc/systemd/system/qgc_video.service

Put the following in this file:

[Unit]
Description=VideoStream

[Service]
ExecStart=/bin/bash /home/pi/script_name.sh

[Install]
WantedBy=multi-user.target

Enable the script at startup.

sudo systemctl enable qgc_video.service

Using FS-A8S

318

Clover and Jetson Nano

Jetson Nano overview
Jetson Nano is a system-on-a-module by Nvidia. It is built on a Tegra X1 platform.
With four ARM Cortex-A57 cores clocked at 1.4 GHz, 4 GB of RAM and a
relatively powerful GPU, it is more capable than a Raspberry Pi 3 series of single-
board computers.

Jetson Nano developer kits come with a carrier board that has USB 3.0, CSI and
Ethernet ports, as well as a row of GPIO pins. The carrier board is only slightly
larger than a Raspberry Pi computer, making it a viable option for an onboard
computer.

The default carrier board does not have a Wi-Fi chip installed. You can use
a USB Wi-Fi adapter or install a Wi-Fi card in the M.2 slot on the carrier
board. Be sure to check your adapter for compatibility with the Jetson
Nano!

Setting up
Nvidia provides an SD card image with an operating system based on Ubuntu
Linux 18.04 for Jetson Nano. This image is a good starting point for ROS and
Clover installation.

Initial system setup

https://developer.nvidia.com/embedded/jetson-nano-developer-kit

Using FS-A8S

319

Be sure to check the official Getting Started instructions for the Jetson
Nano developer kit!

For the initial setup you'll need an HDMI or DisplayPort monitor, a keyboard and a
mouse. Download the Jetson Nano developer kit image and flash it on a microSD
card (a 32+ GB card is strongly recommended). Plug the card into the Jetson
Nano module, connect your monitor, keyboard, and mouse to the carrier board,
and power up the Jetson Nano.

Jetson Nano can be powered by a microUSB cable, but we strongly
suggest using a good power supply and a barrel jack connector. You'll need
to put a jumper on the J48 pins (they are right next to the CSI connector on
the carrier board).

Accept the Nvidia EULA and follow the installer prompts. The system will reboot
after installation. Login with your username and password.

We strongly recommend to choose the English system language/locale for
Jetson Nano to avoid ROS compatibility issues!

If you've installed a Wi-Fi adapter, you may want to configure your Jetson Nano to
connect to your Wi-Fi network automatically. Once the system is installed and
booted up, click on the "wireless network" icon in the top bar, choose "Edit
Connections..." in the drop-down menu, select your network name from the list
and click on the gear icon at the bottom of the window.

Go to the "General" tab in the newly-opened window and check the "All users may
connect to this network" checkbox. Press the "Save" button to close the window.

You may want to make sure you're able to access your Jetson Nano over
the network. The image already has SSH enabled, and it's more convenient
to perform next steps using the remote shell.

Installing ROS

Ubuntu 18.04 is officially supported as a base system for ROS Melodic. Be
sure to check the official installation instructions!

https://developer.nvidia.com/embedded/learn/get-started-jetson-nano-devkit
https://developer.nvidia.com/jetson-nano-sd-card-image-r3231
http://wiki.ros.org/melodic/Installation/Ubuntu

Using FS-A8S

320

Add OSRF keys and repositories to your system:

Install base ROS packages:

sudo apt install ros-melodic-ros-base

Enable your ROS environment and update your rosdep cache:

source /opt/ros/melodic/setup.bash
sudo rosdep init
rosdep update

You may wish to put the source /opt/ros/melodic/setup.bash line at the
end of your user's .profile file.

Install pip for Python 2 (while this is not technically a part of ROS, some
dependencies are only installable using pip):

sudo apt install curl
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
sudo python ./get-pip.py

Building Clover nodes

Create a "workspace" directory in your home folder and populate it with Clover
packages:

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
git clone https://github.com/CopterExpress/clover
git clone https://github.com/CopterExpress/ros_led
git clone https://github.com/okalachev/vl53l1x_ros

Install dependencies using rosdep :

cd ~/catkin_ws
rosdep install --from-paths src --ignore-src -y

Install geographiclib datasets (they are required for mavros, but are not packaged
with it):

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E3
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) mai
sudo apt update

curl https://raw.githubusercontent.com/mavlink/mavros/master/mavros/scripts/ins
chmod a+x ./install_geographiclib_datasets.sh
sudo ./install_geographiclib_datasets.sh

Using FS-A8S

321

Install development libraries for OpenCV 3.2 (recent Jetson Nano images have
OpenCV 4.1.1 preinstalled; using this version will result in build failures):

sudo apt install libopencv-dev=3.2.0+dfsg-4ubuntu0.1

Finally, build the Clover nodes:

cd ~/catkin_ws
catkin_make

You may also want to add udev rules for PX4 flight controllers. Copy the
rules file to /etc/udev/rules.d and run sudo udevadm control --reload-
rules && sudo udevadm trigger .

Running Clover nodes

Set up the workspace environment:

cd ~/catkin_ws
source devel/setup.bash

Configure the launch files to your taste and use roslaunch to launch the nodes:

roslaunch clover clover.launch

You may want to start the Clover nodes automatically. This can be done
with systemd : look at service files for roscore and clover that are used
in our image and adjust them as necessary.

Caveats

CSI cameras

Jetson Nano currently does not support older Raspberry Pi v1 cameras (that are
based on the Omnivision OV5647 sensor). Raspberry Pi v2 cameras (the ones
that use Sony IMX219) are supported, but are not available as Video4Linux
devices.

Fortunately, these cameras are available using GStreamer. You can try using the
 gscam ROS package or our jetson_camera node. The latter requires you to build
OpenCV 3.4 from source with GStreamer support.

The GStreamer pipelines are available at JetsonHacksNano CSI camera
repository.

You may also notice that the camera image has a red tint that is more pronounced
near the edges. This can be fixed by image signal processor tuning. Generally
this should be done by your camera manufacturer; here is a sample ISP

https://github.com/CopterExpress/clover/blob/master/clover/udev/99-px4fmu.rules
https://github.com/CopterExpress/clover/blob/master/builder/assets/roscore.service
https://github.com/CopterExpress/clover/blob/master/builder/assets/clover.service
http://wiki.ros.org/gscam
https://github.com/sfalexrog/jetson_camera
https://github.com/JetsonHacksNano/CSI-Camera
https://www.arducam.com/docs/camera-for-jetson-nano/fix-red-tint-with-isp-tuning/

Using FS-A8S

322

configuration from Adrucam

LED strip

Jetson Nano currently does not support LED strips over GPIO.

https://www.arducam.com/docs/camera-for-jetson-nano/fix-red-tint-with-isp-tuning/

Using FS-A8S

323

Controlling Clover from a smartphone

To control Clover from a smartphone via Wi-Fi, you have to install the appropriate
application – iOS, Android (https://play.google.com/store/apps/details?
id=express.copter.cleverrc).

The mobile transmitter is mainly intended for indoor flights to the range not
exceeding 10-15 m. Many Wi-Fi networks may also impair responsiveness
and the range of the transmitter.

Control from a smartphone is also available in the mobile version of the app
QGroundControl.

Configuring
An open QGroundControl or rviz connection sends large amounts of data
over Wi-Fi, which can adversely affect responsiveness of the mobile
transmitter. It is recommended not to use these applications together with it.

Install Clover image on RPi. For running the application, settings rosbridge and
 rc in the launch file (~/catkin_ws/src/clover/clover/launch/clover.launch)
should be enabled:

<arg name="rosbridge" default="true"/>

<arg name="rc" default="true"/>

After the launch-file is edited, restart package clover :

https://itunes.apple.com/ru/app/clever-rc/id1396166572?mt=8
https://play.google.com/store/apps/details?id=express.copter.cleverrc
https://itunes.apple.com/ru/app/clever-rc/id1396166572?mt=8
https://play.google.com/store/apps/details?id=express.copter.cleverrc
https://docs.qgroundcontrol.com/en/SettingsView/VirtualJoystick.html

Using FS-A8S

324

sudo systemctl restart clover

Also make sure that PX4-parameter COM_RC_IN_MODE is set to 0 (RC
Transmitter).

Additional PX4 parameters:

 COM_RC_LOSS_T – timeout for detecting signal loss by the transmitter (mobile
or physical). It is recommended to increase the timeout to several seconds.
 NAV_RCL_ACT – action upon loss of transmitter signal.

The mobile transmitter conflicts with the real radio control equipment. When
the mobile transmitter is used, it should be powered off.

Connection
Connect the smartphone to Clover Wi-Fi network (clover-xxxx). The application
should connect to the copter automatically. Upon successful connection, the
current mode and the battery charge level should be displayed.

The sticks on the screen of the application work just like real sticks. To arm the
copter, hold the left stick in the bottom right corner for several seconds. To disarm
— in the bottom left corner.

Malfunctions
If the interface of the transmitter displays a surely incorrect voltage (e.g., > 5
V), check that the value of PX4 parameter BAT_N_CELLS matches the actual
number of battery cells. If the displayed voltage is still incorrect, calibrate the
battery (TODO: link).

If instead of mode PX4, text "DISCONNECTED FROM FCU" is displayed,
check Raspberry Pi connection to Pixhawk.

Using FS-A8S

325

Configuring Wi-Fi
The Raspberry Pi Wi-Fi adapter has two main operating modes:

1. Client mode – RPi connects to an existing Wi-Fi network.
2. Access point mode – RPi creates a Wi-Fi network that you can connect to.

On our RPi image the Wi-Fi adapter is configured to use the access point mode
by default.

Changing the password or SSID (of the
network name)

1. Edit the /etc/wpa_supplicant/wpa_supplicant.conf file (using SSH
connection):

 sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

In order to change the name of the Wi-Fi network, change the value of the
 ssid parameter; to change the password, change the psk parameter. For
example:

 network={
 ssid="my-super-ssid"
 psk="cloverwifi123"
 mode=2
 proto=RSN
 key_mgmt=WPA-PSK
 pairwise=CCMP
 group=CCMP
 auth_alg=OPEN
 }

2. Restart Raspberry Pi.

The Wi-Fi network password should be at least 8 characters.

If your wpa_supplicant.conf is not valid, Raspberry Pi will not allow Wi-Fi
connections!

Switching adapter to the client mode
1. Disable the dnsmasq service.

 sudo systemctl stop dnsmasq
 sudo systemctl disable dnsmasq

Using FS-A8S

326

2. Enable DHCP client on the wireless interface to obtain IP address. In order to
do this, remove the following lines from the etc/dhcpcd.conf file:

 interface wlan0
 static ip_address=192.168.11.1/24

3. Configure wpa_supplicant to connect to an existing access point. Change
your /etc/wpa_supplicant/wpa_supplicant.conf to contain the following:

 ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
 update_config=1
 country=GB

 network={
 ssid="SSID"
 psk="password"
 }

where SSID is the name of the network, and password is its password.

4. Restart the dhcpcd service.

 sudo systemctl restart dhcpcd

Switching the adapter to the access point
mode

1. Enable the static IP address in the wireless interface. Add the following lines
to your /etc/dhcpcd.conf file:

 interface wlan0
 static ip_address=192.168.11.1/24

2. Configure wpa_supplicant to work in the access point mode. Change your
 /etc/wpa_supplicant/wpa_supplicant.conf file to contain the following:

 ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
 update_config=1
 country=GB

 network={
 ssid="clover-1234"
 psk="cloverwifi"
 mode=2
 proto=RSN
 key_mgmt=WPA-PSK
 pairwise=CCMP
 group=CCMP
 auth_alg=OPEN
 }

where clover-1234 is the network name and cloverwifi is the password.

3. Enable the dnsmasq service.

Using FS-A8S

327

 sudo systemctl enable dnsmasq
 sudo systemctl start dnsmasq

4. Restart the dhcpcd service.

 sudo systemctl restart dhcpcd

Below you can read more about how RPi networking is organized.

RPi network organization
Network operation in the image is supported by two pre-installed services:

networking — the service enables all network interfaces at startup [5].
dhcpcd — the service ensures that configuration of addressing and routing
on the interfaces is obtained dynamically or specified statically in the config
file.

To work in the router (access point) mode, RPi requires a DHCP server. It is used
to automatically send the settings of the current network to connected clients.
 isc-dhcp-server or dnsmasq may be used for this.

dhcpcd

Starting with Raspbian Jessie, network settings are no longer defined in the
 /etc/network/interfaces file. Now dhcpcd is used for sending addressing and
routing settings[4].

By default, a dhcp client is enabled in all interfaces. Settings for network
interfaces are changed in the /etc/dhcpcd.conf file. An access point should have
a static IP address. To specify one, add the following lines to the end of the file:

interface wlan0
static ip_address=192.168.11.1/24

If the interface is wireless (wlan), the dhcpcd service triggers
 wpa_supplicant [13], which in turn works directly with the Wi-Fi adapter,
and sets it to the specified state.

wpa_supplicant

wpa_supplicant — the service configures the Wi-Fi adapter. The
 wpa_supplicant service does not run as a standalone service (although it exists
as such), but is instead launched as a dhcpcd child process.

By default the config file is /etc/wpa_supplicant/wpa_supplicant.conf . An example
of the configuration file:

Using FS-A8S

328

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev
update_config=1
country=GB

network={
 ssid=\"my-clover\"
 psk=\"cloverwifi\"
 mode=2
 proto=RSN
 key_mgmt=WPA-PSK
 pairwise=CCMP
 group=CCMP
 auth_alg=OPEN
}

Inside the config file, general wpa_supplicant settings, and the settings for the
adapter configuration are specified. The configuration file also contains network
section with the basic settings of the Wi-Fi network, such as network SSID,
password, adapter operating mode. There may be several network sections, but
only the first valid one is used. For example, if the first section contains a
connection to an unavailable network, the adapter will be configured according to
a next valid section, if there is one. Read more about the syntax of
 wpa_supplicant.conf [TODO WIKI].

wpa_passphrase

 wpa_passphrase — a utility for creating the network section.

wpa_passphrase SSID PASSWORD

After running the command, copy the resulting section to your config file. You may
remove the commented field psk , and leave only the field with the password
hash, or vice versa.

network={
 ssid="SSID"
 #psk="PASSWORD"
 psk=c2161655c6ba444d8df94cbbf4e9c5c4c61fc37702b9c66ed37aee1545a5a333
}

Multiple Wi-Fi adapters

The system may use multiple Wi-Fi adapters. If drivers are properly connected to
them, they may be viewed by calling ifconfig (e.g. wlan0 and wlan1).

If you have multiple adapters, the same working network section will be used for
all of them. This is due to the fact that for each interface, dhcpcd separately
creates a child wpa_supplicant process, which runs the same code (since the
config is the same).

To make multiple adapters work with individual settings, the mechanism for
running different configuration scripts is implemented in the called standard
 dhcpcd script. To use it, rename the standard config file as follows:

Using FS-A8S

329

 wpa_supplicant-<interface name>.conf , for example wpa_supplicant-wlan0.conf .

To apply the settings, restart the parent process — the dhcpcd service. This can
be done by running the following command:

sudo systemctl restart dhcpcd

DHCP server

dnsmasq-base

 dnsmasq-base — a command-line utility, which is not a service. To use dnsmasq
as a service, install the dnsmasq package.

sudo apt install dnsmasq-base

dnsmasq

sudo apt install dnsmasq

cat << EOF | sudo tee -a /etc/dnsmasq.conf
interface=wlan0
address=/clover/coex/192.168.11.1
dhcp-range=192.168.11.100,192.168.11.200,12h
no-hosts
filterwin2k
bogus-priv
domain-needed
quiet-dhcp6

EOF

isc-dhcp-server

sudo apt install isc-dhcp-server

Calling dnsmasq-base
sudo dnsmasq --interface=wlan0 --address=/clover/coex/192.168.11.1 --no-daemon

More about dnsmasq-base
dnsmasq --help

or
man dnsmasq

https://www.shellhacks.com/ru/sed-find-replace-string-in-file/
sed -i 's/INTERFACESv4=\"\"/INTERFACESv4=\"wlan0\"/' /etc/default/isc-dhcp-serv

Using FS-A8S

330

cat << EOF | sudo tee /etc/dhcp/dhcpd.conf
subnet 192.168.11.0 netmask 255.255.255.0 {
 range 192.168.11.11 192.168.11.254;
 #option domain-name-servers 8.8.8.8;
 #option domain-name "rpi.local";
 option routers 192.168.11.1;
 option broadcast-address 192.168.11.255;
 default-lease-time 600;
 max-lease-time 7200;
}

EOF

Links
1. habr.com Linux WiFi from the command line with wpa_supplicant
2. wiki.archlinux.org WPA supplicant (Russian)
3. blog.hoxnox.com: WiFi access point with wpa_supplicant
4. dmitrysnotes.ru: Raspberry Pi 3. Assigning a static IP addresses
5. thegeekdiary.com: Linux OS Service ‘network’
6. frillip.com: Using your new Raspberry Pi 3 as a Wi-Fi access point with

hostapt (it also contains instructions for setting up forwarding for using RPi as
an Internet gateway)

7. habr.com: Configuring a ddns server on a GNU/Linux Debian 6 (Good article
on configuring a ddns server based on bind and isc-dhcp-server)

8. pro-gram.ru to: Setting up and configuring a DHCP server in Ubuntu 16.04.
(setup isc-dhcp-server)

9. expert-orda.ru: Configuring a DHCP server in Ubuntu (setup isc-dhcp-server)
10. academicfox.com: A Raspberry Pi wireless access point (WiFi access point)

(setting the routes, hostapd, isc-dhcp-server)
11. weworkweplay.com: Automatically connect a Raspberry Pi to a Wifi network

(Contains settings for creating an open access point)
12. wiki.archlinux.org: WPA supplicant
13. wiki.archlinux.org: dhcpcd (dhcpcd hook wpa_supplicant)

cat << EOF | sudo tee /etc/network/if-up.d/isc-dhcp-server && sudo chmod +x /et
#!/bin/sh
if ["\$IFACE" = "--all"];
then sleep 10 && systemctl start isc-dhcp-server.service &
fi

EOF

https://habr.com/post/315960/
https://wiki.archlinux.org/index.php/WPA_supplicant_%28%D0%A0%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B9%29
http://blog.hoxnox.com/gentoo/wifi-hotspot.html
http://dmitrysnotes.ru/raspberry-pi-3-prisvoenie-staticheskogo-ip-adresa
https://www.thegeekdiary.com/linux-os-service-network/
https://frillip.com/using-your-raspberry-pi-3-as-a-wifi-access-point-with-hostapd/
https://habr.com/sandbox/30433/
https://pro-gram.ru/dhcp-server-ubuntu.html
http://expert-orda.ru/posts/liuxnewbie/125--dhcp-ubuntu
http://academicfox.com/raspberry-pi-besprovodnaya-tochka-dostupa-wifi-access-point/
http://weworkweplay.com/play/automatically-connect-a-raspberry-pi-to-a-wifi-network/
https://wiki.archlinux.org/index.php/WPA%20supplicant
https://wiki.archlinux.org/index.php/Dhcpcd#10-wpa_supplicant

Using FS-A8S

331

UART interface
UART is an asynchronous serial interface for data transfer that is used in many
devices. For example, GPS antennas, Wi-Fi routers, or Pixhawk.

The interface usually contains two lines: TX for data transmission, and RX for
data reception. It usually uses the 5-volt logics.

To connect two devices, you have to feed the TX line of the first device to the RX
line of the other one. A similar manipulation is required on the other end for
ensuring two-way data transmission.

It is also necessary to synchronize the voltages – connect the ground on two
devices.

Read more about the interface and the Protocol in this article.

Linux TTY
In Linux, there is the concept of POSIX Terminal Interface (read more here. It is
an abstraction over the serial or virtual interface that allows several agents to
work with the device simultaneously.

An example of such abstraction in Raspbian may be /dev/tty1 – the device for
text output to the screen connected via HDMI.

UART on Raspberry Pi 3
Raspberry Pi 3 has two hardware UART interfaces:

1. Mini UART (/dev/ttyAMA0) – uses the timing of the RPi graphics core, and
therefore limits its frequency.

2. PL011 (/dev/ttyS0) – the full-fledged UART interface on a separate chip of
the microcontroller.

Read more about UART on Raspberry Pi in the official article.

Using microcontroller valves, these interfaces may be switched between two
physical outputs:

1. UART connector on GPIO;
2. RPi Bluetooth module.

By default, Raspberry Pi 3 PL011 is connected to the Bluetooth module. And Mini
UART is disabled with the value of directive enable_uart , which is 0 by default.

One should understand that directive enable_uart changes its default
value, depending on which UART is connected to the RPi Bluetooth module
with directive dtoverlay=pi3-miniuart-bt .

https://habr.com/post/109395/
https://en.wikipedia.org/wiki/POSIX_terminal_interface
https://www.raspberrypi.org/documentation/configuration/uart.md

Using FS-A8S

332

For the sake of convenience of working with these outputs, aliases exist in
Raspbian:

 /dev/serial0 – always points to the TTY device that is connected to the
GPIO ports.
 /dev/serial1 – always points to the TTY device that is connected to the
Bluetooth module.

Configuration of UART on Raspberry Pi 3

To configure UART, there are directives located in /boot/config.txt .

To enable the UART interface on GPIO:

enable_uart=1

To disconnect the UART interface from the Bluetooth module:

dtoverlay=pi3-disable-bt

To connect Mini UART to the Bluetooth module:

dtoverlay=pi3-miniuart-bt

If the Bluetooth module is disabled, one should disable the hciuart service:

sudo systemctl disable hciuart.service

Default image configuration
In the Clover image for RPi, we initially disabled Mini UART and the Bluetooth
module.

Bugs
If you use the Mini UART connection to Bluetooth, hciuart crashes with the
following error:

Using FS-A8S

333

In case of Bluetooth disconnection

/dev/serial0 -\> ttyAMA0
/dev/serial1 -\> ttyS0

Using FS-A8S

334

PX4 Parameters
Full documentation on PX4 parameters:
https://docs.px4.io/master/en/advanced_config/parameter_reference.html.

For changing PX4 parameters, use QGroundControl software, connect to Clover
over Wi-Fi or USB. Go to Vehicle Setup panel (click on the QGroundControl logo
in the top-left corner) and choose Parameters menu.

Recommended values

Common parameters

Parameter Value Comment

 SENS_FLOW_ROT 0 (No
rotation)

If using PX4Flow hardware, keep the
default value

 SENS_FLOW_MINHGT 0.0 For VL53L1X rangefinder

 SENS_FLOW_MAXHGT 4.0 For VL53L1X rangefinder

 SENS_FLOW_MAXR 10.0

 SYS_HAS_MAG 0 If impossible to run the magnetometer
(No mags found error)

Estimator subsystem parameters

In case of using LPE (COEX patched firmware):

https://docs.px4.io/master/en/advanced_config/parameter_reference.html

Using FS-A8S

335

Parameter Value Comment

 LPE_FUSION 86

Checkboxes: flow + vis + land detector +
gyro comp. If flying over horizontal floor
pub agl as lpos down checkbox is allowed.
Details: Optical Flow, ArUco markers,
GPS.

 LPE_VIS_DELAY 0.0

 LPE_VIS_Z 0.1

 LPE_FLW_SCALE 1.0

 LPE_FLW_R 0.2

 LPE_FLW_RR 0.0

 LPE_FLW_QMIN 10

 ATT_W_EXT_HDG 0.5 Enabling usage of external yaw angle
(when navigating using markers map)

 ATT_EXT_HDG_M 1
(Vision)

 ATT_W_MAG 0 Disabling usage of the magnetometer
(when navigating indoor)

In case of using EKF2 (official firmware):

Parameter Value Comment

 EKF2_AID_MASK * 26

Checkboxes: flow + vision position +
vision yaw.

 Details: Optical Flow, ArUco markers,
GPS.

 EKF2_OF_DELAY 0

 EKF2_OF_QMIN 10

 EKF2_OF_N_MIN 0.05

 EKF2_OF_N_MAX 0.2

 EKF2_HGT_MODE * 3
(Vision)

If the rangefinder is present and flying
over horizontal floor – 2 (Range sensor)

 EKF2_EVA_NOISE
0.1 rad
or 5
deg

 EKF2_EVP_NOISE 0.1

 EKF2_EV_DELAY 0

 EKF2_MAG_TYPE 5
(None)

Disabling usage of the magnetometer
(when navigating indoor)

* — starting from PX4 version 1.14, the parameters marked with an asterisk are
replaced with the following:

Using FS-A8S

336

Parameter Value Comment

 EKF2_EV_CTRL 11 Checkboxes: Horizontal position +
Vertical position + Yaw

 EKF2_GPS_CTRL 0 All checkboxes are disabled

 EKF2_BARO_CTRL 0
(Disabled) Barometer is disabled

 EKF2_OF_CTRL 1
(Enabled) Optical flow is enabled

 EKF2_HGT_REF 3 (Vision)
If the rangefinder is present and flying
over horizontal floor – 2 (Range
sensor)

 EKF2_RNG_CTRL 2
(Enabled) Range sensor is enabled

See also: list of default parameters of the Clover simulator:
https://github.com/CopterExpress/clover/blob/master/clover_simulation/airfr
ames/4500_clover.

Additional information
The SYS_MC_EST_GROUP parameter defines the estimator subsystem to use.

Estimator subsystem is a group of modules that calculates the current state of the
copter using readings from the sensors. The copter state includes:

Angle rate of the copter – roll_rate, pitch_rate, yaw_rate;
Copter orientation (in the local coordinate system) – roll, pitch, yaw (one of
presentations);
Copter position (in the local coordinate system) – x, y, z;
Copter speed (in the local coordinate system) – vx, vy, vz;
Global coordinates of the copter – latitude, longitude, altitude;
Altitude above the surface;
Other parameters (the drift of gyroscopes, wind speed, etc.).

 SYS_AUTOCONFIG — resets all parameters (sets to 1).

EKF2
 EKF2_AID_MASK — selects sensors that are used by EKF2 to calculate the copter
state.

 EKF2_HGT_MODE is the main source of height data (z in the local coordinate
system):

0 – pressure reading on the barometer.
1 – GPS.
2 – distance meter (for example, vl53l1x).
3 – data from VPE.

https://github.com/CopterExpress/clover/blob/master/clover_simulation/airframes/4500_clover

Using FS-A8S

337

Variant 2 is the most accurate; however, it is correct to use it only if the surface
the copter flies over is flat. Otherwise, the Z axis origin will move up and down
with the altitude of the surface.

Multicopter Position Control
These parameters adjust the flight of the copter by position (POSCTL,
OFFBOARD, AUTO modes).

 MPC_THR_HOVER — hovering throttle. This option is to set to the approximate
percentage of throttle needed to make the copter maintain its altitude. If copter
has a tendency to gain or lose altitude during the hovering mode, reduce or
increase this value.

 MPC_XY_P – position factor P of the ESC. This parameter affects how sharply the
copter will react to the position commands. A too high value may cause
overshoots.

 MPC_XY_VEL_P – speed factor P of the ESC. This parameter also affects the
accuracy and sharpness of copter execution of the given position. A too high
value may cause overshoots.

 MPC_XY_VEL_MAX — the maximum horizontal speed in POSCTL, OFFBOARD,
AUTO modes.

 MPC_Z_P , MPC_Z_VEL_P – vertical position and speed factors P of the ESCs they
determine the copter's ability to maintain the desired altitude.

 MPC_LAND_SPEED is the vertical velocity of landing in the LAND mode.

LPE + Q attitude estimator
These parameters configure the behavior of the lpe and q modules, which
compute the state (orientation, position) of the copter. These parameters apply
only if the SYS_MC_EST_GROUP parameter is set to 1 (local_position_estimator,
attitude_estimator_q).

Commander
Prearm checks, switching the modes and states of the copter.

Sensors
Enabling, disabling and configuring various sensors.

Using FS-A8S

338

PX4 Logs and Topics
For detailed analysis of the PX4 firmware behavior, you can view flight logs. Flight
logs are messages in uORB topics written to a file with extension .ulg . The log
file can be downloaded using QGroundControl via Wi-Fi or USB in the Download
Log tab:

The required .ulg files may also be copied directly from the MicroSD card in the
flight controller.

Analysis
The log file can be analyzed using the FlightPlot application. The current version
of the application is available for downloading from GitHub.

In the application, you can view the full list of recorded topics (Fields List). In the
list, you will have to select the required topics, after which they will appear on the
chart:

https://dev.px4.io/en/middleware/uorb.html
https://github.com/PX4/FlightPlot/releases

Using FS-A8S

339

Main topics in PX4
uORB is a pubsub mechanism similar to ROS topics, but greatly simplified and
suitable for an embedded environment.

A complete list of topics may be found in the source code of the project in the
 msg directory.

Here are some topics:

vehicle_status — quadcopter status (mode, etc.).
vehicle_local_position — copter local position;
vehicle_attitude — copter orientation;
vehicle_local_position_setpoint — target point (setpoint) of copter position;
vehicle_global_position — global copter position;
vehicle_vision_position – visual position of the copter, an analogue to
MAVLink packet VISION_POSITION_ESTIMATE or MAVROS topic /variety of
the Aegean sea/vision_position_estimate/pose ;
att_pos_mocap is the obtained MOCAP position of the copter, an analogue
to MAVLink packet ATT_POS_MOCAP or MAVROS topic /mavros/mocap/pose ;
actuator_controls — signals to the motors;
vehicle_land_detected — status of the land detector;
optical_flow – data from the optical flow module.

Monitoring the topics in real time
For newer versions of the Pixhawk circuit board (px4fmu-v3), as well as for
Pixracer circuit boards, the firmware contains module topic_listener , which
allows viewing the values of topics in real time (including in flight itself).

To use it, select tab MAVLink Console in QGroundControl:

Command list_topics displays a list of topics available for viewing (included
only in SITL).

Command listener <topic name> displays the current value in the topic. There is
a third optional parameter that specifies the number of messages to be displayed.

https://dev.px4.io/en/middleware/uorb.html
https://github.com/PX4/Firmware/tree/master/msg

Using FS-A8S

340

Examples of commands:

 listener vehicle_local_position

 listener vehicle_attitude 5

Using FS-A8S

341

Pixhawk / Pixracer firmware flashing
Pixhawk, Pixracer or COEX Pix firmware may be flashed using QGroundControl
or command line utilities.

Modified firmware for Clover
It is advisable to use a specialized build of PX4 with the necessary fixes and
better defaults for the Clover drone. Use the latest stable release in our GitHub
repository with the word clover , for example, v1.8.2-clover.5 .

If you are using the firmware version older than v1.10 (for example,
 v1.8.2-clover.13), then in order to avoid configuration errors, use
QGroundControl version v4.2.0 (or older). See detailed information about
changes in the firmware parameters that cause errors in newer versions of
QGroundControl.

QGroundControl
Open the Firmware section in QGroundControl. Then, connect your flight
controller via USB.

Choose PX4 Flight Stack. If you wish to install the official firmware (with EKF2 for
Pixhawk), choose "Standard version". In order to flash custom firmware, choose
"Custom firmware file..." and click OK.

Do not unplug your flight controller from USB during flashing!

Firmware variants
The name of the firmware file contains information about the target flight controller
and build variant. For example:

 px4fmu-v4_default.px4 — firmware for COEX Pix and Pixracer with EKF2
and LPE (Clover 3 / Clover 4).
 px4fmu-v2_lpe.px4 — firmware for Pixhawk with LPE (Clover 2).
 px4fmu-v2_default.px4 — firmware for Pixhawk with EKF2.
 px4fmu-v3_default.px4 — firmware for newer Pixhawk versions (rev. 3 chip,
see Fig. + Bootloader v5) with EKF2 and LPE.

https://github.com/CopterExpress/Firmware/releases
https://github.com/mavlink/qgroundcontrol/releases/tag/v4.2.0
https://docs.px4.io/v1.11/en/config/battery.html#parameter-migration-notes

Using FS-A8S

342

In order to flash the px4fmu-v3_default.px4 file, you may need to use the
 force_upload command in the command prompt.

Command prompt
PX4 may be compiled from the source and automatically flashed to the flight
controller from the command prompt.

To do this, clone the PX4 repository:

git clone https://github.com/PX4/PX4-Autopilot.git

Select the appropriate version (tag) using git checkout . Then compile and
upload the firmware:

make px4_fmu-v4_default upload

Where px4_fmu-v4_default is the required firmware variant.

In order to upload the v3 firmware to Pixhawk, you may need to use the
 force_upload option:

make px4_fmu-v3_default force-upload

Using FS-A8S

343

MAVLink
Basic documentation: https://mavlink.io/en/.

MAVLink is a communication protocol between autonomous aircraft and vehicle
systems (drones, planes, vehicles). The MAVLink protocol lies at the base of
interaction between Pixhawk and Raspberry Pi.

Clover contains two wrappers for this protocol: MAVROS and simple_offboard.

The code for sending an arbitrary MAVLink message may be found in the
examples.

The main concerts

Communication channel

The MAVLink protocol may be used on top of the following communication
channels:

connection in series (UART, USB, etc.);
UDP (Wi-Fi, Ethernet, 3G, LTE);
TCP (Wi-Fi, Ethernet, 3G, LTE).

Message

A MAVLink message is an individual "portion" of data transmitted between
devices. An individual MAVLink message contains information about the state of
the drone (or another device) or a command for the drone.

Examples of MAVLink messages:

 ATTITUDE , ATTITUDE_QUATERNION – the quadcopter orientation in the space;
 LOCAL_POSITION_NED – local position of the quadcopter;
 GLOBAL_POSITION_INT – global position of the quadcopter
(latitude/longitude/altitude);
 COMMAND_LONG – a command to the quadcopter (take off, land, toggle modes,
etc).

A complete list of MAVLink messages is available in MAVLink documentation.

System, system component

Each device (a drone, a base station, etc.) has an ID in the MAVLink network. In
PX4 MAVLink, ID is changed using parameter MAV_SYS_ID . Each MAVLink
message contains a field with the ID of the originating system. Besides, some
messages (for example, COMMAND_LONG) also contain the ID of the target system.

https://mavlink.io/en/
https://mavlink.io/en/messages/common.html

Using FS-A8S

344

In addition to IDs of the systems, the messages may contain IDs of the originating
component and the target component. Examples of the system components: a
flight controller, an external camera, a controlling onboard computer (Raspberry Pi
in case of Clover), etc.

An example of a package

An example of a MAVLink package structure with message COMMAND_LONG :

Using FS-A8S

345

Field Length Name Comme

 magic 1 byte Start tag 0xFD for
MAVLink 2

 len 1 byte Data size

 incompat_flags 1 byte
Reversely
incompatible
flags

Currently
unused

 compat_flags 1 byte
Reversely
compatible
flags

Currently
unused

 seq 1 byte
Message
sequence
number

 sysid 1 byte Originating
system ID

 compid 1 byte
Originating
component
ID

 msgid 3 bytes Message ID

 target_system 1 byte Target
system ID

 target_component 1 byte
Target
component
ID

 command 2 bytes Command
ID

 confirmation 1 byte Number for
confirmation

 param1 4 bytes Parameter 1

A single-
precision
floating po
number

 param2 4 bytes Parameter 2

 param3 4 bytes Parameter 3

 param4 4 bytes Parameter 4

 param5 4 bytes Parameter 5

 param6 4 bytes Parameter 6

 param7 4 bytes Parameter 7

 checksum 2 bytes Checksum

 signature 13
bytes

Signature
(optional)

Allows
checking t
the packag
has not be
compromis
Usually
unused.

H
ea

de
r

D
at

a
(e

xa
m

pl
e)

Using FS-A8S

346

Yellow is used for highlighting the data fields(payload). An individual set of such
fields exists for every message type.

Using FS-A8S

347

How to use a multimeter?

Check the circuits (continuity test)
The tested object should be disconnected from the power supply (de-
energized)!

Using a multimeter, check the absence of a short circuit (check the loop):

Set the multimeter to the loop check mode.
Test the multimeter by shorting the probes. A unit that operated properly
makes a distinctive sound.
The red probe is connected to the “+ ”pin, the black probe — to the “-” /
”GND” pin. If the circuit is short, a sound is heard.

Loop check mode

1. Check OPEN CONDITION of the following circuits (absence of the multimeter
sound signal):

“BAT+” and “BAT-”
“12V” and “GND”
“5V” and “GND”

2. Check CLOSED CONDITION of the following circuits (presence of the
multimeter sound signal):

“BAT-” with every contact marked “-” and “GND”
“BAT+”, with every contact marked “+”

Checking for voltage
Using a multimeter, you need to make sure that the voltage converters located on
the power distribution board are working properly and provide the voltage of 5V
and 12V, respectively.

Switch the multimeter to the "Measuring DC voltage" mode
Select the upper limit of the measured voltage (in our case, not more than 20)
Make sure the battery is connected
Make the following measurements:

1. Measure the battery voltage (between BAT+ and BAT-). It should be
between 14.0 V to 16.8 V

2. Measure the voltage at the 5V output. It should not exceed 5.5 V
3. Measure the voltage at the 12 V output. It should not exceed 12.5 V

After measurement:

disconnect the battery
turn off the multimeter

Using FS-A8S

348

Possible radio failures

The remote is blocked
If the remote is blocked, the LCD will read: "Warning. Place all switches in their up
position and lower the throttle".

To unlock the controller, place all sticks and switches to the initial position,
namely:

1. The left stick (1) to the central bottom position.
2. Switches A, B, C, D (2) to the position “away from yourself”.
3. The right stick (3) to the center.

No communication with the receiver
To test the remote connection with the receiver, turn on the remote and watch the
readouts on the LCD Screen.

1. Communication with the receiver is absent:

Using FS-A8S

349

2. Communication with the receiver established:

If there is no communication:

1. Make sure the receiver is enabled (the red LED is blinking). If the LED
remains constantly ON, it means that communication is established with
another remote.

2. Pair the remote and the receiver.

No communication with the flight
controller
If there is no communication with the flight controller, the screen of the computer
monitor in the Channel Monitor window will not display changes in the position of
the sliders when the sticks of your remote are shifted.

1. Go to MENU (by holding down the “OK” button)
2. Select menu “System setup” (Up/Down Button to navigate, OK button - to

confirms the choice).
3. Select “RX setup” > “PPM OUTPUT” > “On”
4. Save changes (hold pressed the “CANCEL” button).

Using FS-A8S

350

Flashing ESCs using BLHeliSuite
A good article that explains the principle of ESCs (Electric speed controller)
operation: http://www.avmodels.ru/engines/electric/esc.html

Why reflash?
Sometimes, it is necessary to change one of ESC parameters, such as the
direction of motor rotation, the minimum and the maximum duty cycle of the PPM
signal at ESC input, the volume of audio signals emitted by the motor, or the time
after which the ESC should start reminding that it is engaged.

An application for flashing ESCs
For flashing various ESC, the BLHeliSuite application is used (for Windows).

To start the (BLHeliSuite.exe) application, unpack archives BLHeliAtmelHEX.zip
and BLHeliSilabsHEX.zip into the folder with the application.

A programming unit for flashing ESCs
To flash an ESC, you need a programming unit that can handle an ESC controller
via the 1-wire protocol. One of the ways of obtaining the programming unit - is
flashing special firmware to an Arduino device. BLHeliSuite contains a tool for
creating interfaces for programming units.

Creating a programming unit on the example of Arduino Mega.

1. Start BLHeliSuite and select the Make interfaces tab.

http://www.avmodels.ru/engines/electric/esc.html
https://github.com/4712/BLHeliSuite

Using FS-A8S

351

2. Connect the Arduino to a computer, if necessary, check the number of the
COM port to which the circuit board is connected, in the Device Manager.

3. Click on Arduino 4way-interface in tab Make Arduino Interface Boards, and
select the firmware file. After the file is selected, the flashing of the controller
will start.

Using FS-A8S

352

4. After flashing the Arduino, return to tap Silabs ESC Setup and connect to
Arduino, having selected the 4way-if interface of the programming device and
the Arduino COM port.

Using FS-A8S

353

Connecting ESCs to Arduino
For flashing or readjusting ESCs, connect signal ports (usually white) of ESCs to
Arduino ports, after checking in the manual (see the figure below), which ports are
used for connecting to ESCs. You should also connect GND of Arduino with the
ground of one of the ESCs (usually black). The ESCs should be connected to
power, and, if electric motors are connected to ESCs, they should not have
propellers.

Using FS-A8S

354

In the case of Arduino Mega, signal ports of the ECSs are connected to ports
D43-D49 and D51.

Changing ESC settings
To download information about firmware version and ESC settings, click on
Check.

Using FS-A8S

355

The main parameters that we are interested in are:

Motor Direction (Normal or Reversed) - sets motor rotation direction.
Convenient, if you do not wish to reconnect an incorrectly connected motor.
PPM Min and Max Throttle - sets the minimum and the maximum throttle
signal
Startup Beep Volume - set the signal volume on startup. In firmware16.65, an
ability to change the startup melody has been added. More information is
available [here] (https://github.com/cleanflight/blheli-multishot/releases). For
example, you can set the Imperial March from the Star Wars or the main
theme from the Game of the Thrones as the startup melody
Beacon Volume - sets the volume of the detecting signal. When the motors
have not been rotating for some time, and the ESC is not used, it starts
reminding about itself by motor squeaks.

https://github.com/cleanflight/blheli-multishot/releases

Using FS-A8S

356

Beacon Delay - sets the duration of inactivity, after which the detecting signal
is enabled. During development, it may become boring, therefore it may be
set to infinity.

The leftmost motor in the list of motors (Multiple ESC) is considered the (master)
motor. by clicking on motor numbers, you can enable or disable the possibility of
writing their settings. After changing the necessary parameters, you can write
settings to respective motors by clicking on Write Setup.

To display the settings of all ESCs simultaneously, you can use the ESC Overview
tab.

Flashing ESCs
ESC firmware files are located here.

To flesh ESCs, click on button Flash BLHeli and choose the firmware file with the
type of the controller, the name of which is indicated in the firmware name frame
on top of the screen in tab Silabs ESC Setup (for the controller that is used in
Clover 2, it is A-H-70).

To re-flash an individual ESC, disable all other ESCs.

Video guide to flashing ESCs
For a better understanding of the things written in the article, we recommend
watching a video guide about connecting electronics and flashing ESCs in English
on youtube.

https://github.com/cleanflight/blheli-multishot/tree/master/BLHeli_S%20SiLabs/Hex%20Files
https://www.youtube.com/watch?v=i6lhMcQLRSU&feature=youtu.be

Using FS-A8S

357

Controlling the copter from Arduino
For interaction with ROS topics and services on a Raspberry Pi, you can use the
rosserial_arduino library. This library is pre-installed on a Raspberry Pi image.

The main tutorial for rosserial: http://wiki.ros.org/rosserial_arduino/Tutorials

Arduino is to be installed on Clover and connected via a USB port.

Configuring Arduino IDE
To work with ROS and Arduino, you should understand the format of installed
packages' messages. For this purpose on Raspberry Pi, build the ROS messages
library:

rosrun rosserial_arduino make_libraries.py.

The obtained folder ros_lib is to be copied to <sketches folder>/libraries on
a computer with Arduino IDE.

Configuring Raspberry Pi
To run the program on Arduino once, you can use command:

roslaunch clover arduino.launch

To start the link with Arduino at the startup automatically, set argument arduino
in the Clover launch file (~/catkin_ws/src/clover/clover/launch/clover.launch):

<arg name="arduino" default="true"/>

After the launch file is edited, restart the clover service:

sudo systemctl restart clover

Delays
When rosserial_arduino is used, the Arduino microcontroller should not be
blocked for more than a few seconds (for example, using the delay function);
otherwise communication between Raspberry Pi and Arduino will be broken.

During implementation of long while cycles, ensure periodic calling the
 hn.spinOnce function:

http://wiki.ros.org/rosserial_arduino
http://wiki.ros.org/rosserial_arduino/Tutorials

Using FS-A8S

358

while(/* condition */) {
 // ... Perform required actions
 nh.spinOnce();
}

To organize long delays, use the delays in a loop with periodic calling of the
 hn.spinOnce() function:

// 8 second delay
for(int i=0; i<8; i++) {
 delay(1000);
 nh.spinOnce();
}

Working with Clover
The set of services and topics is similar to the regular set in simple_offboard and
mavros.

An example of a program that controls the copter by position using the navigate
and set_mode services:

Using FS-A8S

359

// Connecting libraries for working with rosserial
#include <ros.h>

// Connecting Clover and MAVROS package message header files
#include <clover/Navigate.h>
#include <mavros_msgs/SetMode.h>

using namespace clover;
using namespace mavros_msgs;

ros::NodeHandle nh;

// Declaring services
ros::ServiceClient<Navigate::Request, Navigate::Response> navigate("/navigate")
ros::ServiceClient<SetMode::Request, SetMode::Response> setMode("/mavros/set_mo

void setup()
{
 // Initializing rosserial
 nh.initNode();

 // Initializing services
 nh.serviceClient(navigate);
 nh.serviceClient(setMode);

 // Waiting for connection to Raspberry Pi
 while(!nh.connected()) nh.spinOnce();
 nh.loginfo("Startup complete");

 // Custom settings
 // <...>

 // Test program
 Navigate::Request nav_req;
 Navigate::Response nav_res;
 SetMode::Request sm_req;
 SetMode::Response sm_res;

 // Ascending to 2 meters:
 nh.loginfo("Take off");
 nav_req.auto_arm = false;
 nav_req.x = 0;
 nav_req.y = 0;
 nav_req.z = 2;
 nav_req.frame_id = "body";
 nav_req.speed = 0.5;
 navigate.call(nav_req, nav_res);

 // Waiting for 5 seconds
 for(int i=0; i<5; i++) {
 delay(1000);
 nh.spinOnce();
 }

 nav_req.auto_arm = false;

 // Flying forward 3 meters:
 nh.loginfo("Fly forward");
 nav_req.auto_arm = true;
 nav_req.x = 3;
 nav_req.y = 0;
 nav_req.z = 0;
 nav_req.frame_id = "body";
 nav_req.speed = 0.8;
 navigate.call(nav_req, nav_res);

Using FS-A8S

360

Getting telemetry
With Arduino, you can use the get_telemetry service. To do so, declare it similar
to the navigate and set_mode services:

 // Waiting for 5 seconds
 for(int i=0; i<5; i++) {
 delay(1000);
 nh.spinOnce();
 }

 // Flying to point 1:0:2 in the marker field
 nh.loginfo("Fly on point");
 nav_req.auto_arm = false;
 nav_req.x = 1;
 nav_req.y = 0;
 nav_req.z = 2;
 nav_req.frame_id = "aruco_map";
 nav_req.speed = 0.8;
 navigate.call(nav_req, nav_res);

 // Waiting for 5 seconds
 for(int i=0; i<5; i++) {
 delay(1000);
 nh.spinOnce();
 }

 // Landing
 nh.loginfo("Land");
 sm_req.custom_mode = "AUTO.LAND";
 setMode.call(sm_req, sm_res);
}

void loop()
{
}

Using FS-A8S

361

Problem
When using Arduino Nano, RAM may be insufficient. In this case, messages will
appear in the Arduino IDE like:

You can reduce RAM usage by reducing the size of the buffers allocated for
sending and receiving messages. To do this, place the following line at the
beginning the program:

#define __AVR_ATmega168__ 1

You can reduce the amount of used memory even more, if you manually configure
the number publishers and subscribers, as well as the size of memory buffers
allocated for messages, for example:

#include <ros.h>

// ...

#include <clover/GetTelemetry.h>

// ...

ros::ServiceClient<GetTelemetry::Request, GetTelemetry::Response> getTelemetry(

// ...

nh.serviceClient(getTelemetry);

// ...

GetTelemetry::Request gt_req;
GetTelemetry::Response gt_res;

// ...

gt_req.frame_id = "aruco_map"; // frame id for x, y, z
getTelemetry.call(gt_req, gt_res);

// gt_res.x is copter position on the x axis
// gt_res.y is copter position on the y axis
// gt_res.z is copter position on the z axis

Global variables use 1837 bytes (89%) of the dynamic memory, leaving 211 bytes
Not enough memory, the program may be unstable.

Using FS-A8S

362

#include <ros.h>

// ...

typedef ros::NodeHandle_<ArduinoHardware, 3, 3, 100, 100> NodeHandle;

// ...
NodeHandle nh;

Using FS-A8S

363

Connecting GPS
Upon connecting GPS, the following possibilities appear:

The copter can remain at the same point when flying outside
Autonomous missions may be programmed in the QGroundControl
application
Flying may be performed by global points in standalone mode using the
simple_offboard module.

Useful links:

https://docs.px4.io/en/assembly/quick_start_pixhawk.html
http://ardupilot.org/copter/docs/common-pixhawk-wiring-and-quick-start.html
http://ardupilot.org/copter/docs/common-installing-3dr-ublox-gps-compass-
module.html

Connection
The GPS module is connected to "GPS" and "I2C" (compass) connectors of the
flight controller.

If GPS is connected, magnetometers are to be re-calibrated in the
QGroundControl application via a Wi-Fi or USB connection.

Next, GPS is to be enabled in parameter EKF2_AID_MASK (when EKF2 is used) or
 LPE_FUSION (when LPE is used). When using LPE the weight of the
magnetometer should be more 0 (ATT_W_MAG = 0.1).

https://docs.px4.io/en/assembly/quick_start_pixhawk.html
http://ardupilot.org/copter/docs/common-pixhawk-wiring-and-quick-start.html
http://ardupilot.org/copter/docs/common-installing-3dr-ublox-gps-compass-module.html

Using FS-A8S

364

Working with IR sensors on
Raspberry Pi 3

This article is not relevant for the latest versions of the clover image and
works only on the versions clover_v0.16-clover_v0.17.

Infrared sensors are a convenient tool for transmitting any commands to the
copter. They are flexible in configuration, and interaction with them is possible in
Python.

Connecting the IR receiver
Most IR receivers operate and are connected the same way. Such receivers have
3 pins for connecting: G/GND — ground V/VCC — 5V power, S/OUT — signal.

The signal port doesn't have to be connected to port GPIO 17; this pin may
be changed during the in/out port settings.

Using FS-A8S

365

Configuring the IR receiver to work with
the LIRC module
LIRC (Linux Infrared Remote Control) is a stable and time-proven open source
library, which allows sending and receiving commands via an infrared port. LIRC
is supported by Raspbian.

To install LIRC and related modules, connect your Raspberry Pi to the Internet
and run the console command:

sudo apt-get update
sudo apt-get install lirc
sudo apt-get install python-lirc
pip install py-irsend

To correctly edit the system files, superuser privileges are required; when
calling a text editor, use sudo .

After installing the module, edit file /etc/modules and add line:

lirc_dev
lirc_rpi gpio_in_pin=18 gpio_out_pin=17

Where:

 gpio_in_pin is the input pin from the receiver
 gpio_out_pin is the transmitter output pin

Update the following line in file /boot/config.txt :

dtoverlay=lirc-rpi,gpio_in_pin=18,gpio_out_pin=17

Add the following lines to file /etc/lirc/hardware.conf . Is this file does not exist,
create it yourself.

LIRCD_ARGS="--uinput --listen"
LOAD_MODULES=true
DRIVER="default"
DEVICE="/dev/lirc0"
MODULES="lirc_rpi"

Update the following lines in file /etc/lirc/lirc_options.conf

driver = default
device = /dev/lirc0

All required settings are made, you now have to restart your Raspberry Pi device
to complete the installation. To do so, run:

sudo reboot

Using FS-A8S

366

After rebooting, check its status by calling command:

sudo /etc/init.d/lircd status

If everything has been done correctly, the status should be active . To check
whether the installed module LIRC is running, disable daemon lircd , and call
the appropriate command:

sudo /etc/init.d/lircd stop
mode2 -d /dev/lirc0

Now point the IR transmitter on your device and tap a few keys. You should see
something like this:

space 402351
pulse 135
space 7085
pulse 85
space 2903
pulse 560
space 1706
pulse 535

If you are using an IR transmitter (a TV remote, an air conditioner remote,
etc. and you are not getting the signal when checking, your remote is
evidently using another signal frequency. When using receivers such as
TSOP 22XX, the operating frequency of the signal reception will be in the
range between 30 and 50 kHz.

Write your configuration of the IR
transmitter
If you want to use your own IR transmitter, you will have to write its specific
settings using the supplied module irrecord . For this purpose, disable daemon
 lircd , and call the appropriate command. During transmitter calibration, stick to
all written instructions.

Please note that the last step of the calibration will be specifying the names
of the keys that you will want to decode programmatically. To view the list of
available names, call command irrecord --list-namespace .

irrecord -d /dev/lirc0 ~/lircd.conf

If you have managed to successfully write the configuration of your transmitter, file
 your-name.lircd.conf should appear in folder /home/pi/ . Now you need to
move the written configuration file to working folder lirc , and restart the
daemon:

Using FS-A8S

367

sudo cp ~/your-name.lircd.conf /etc/lirc/lircd.conf
sudo /etc/init.d/lircd restart

To check whether the written configuration is recognized, call the appropriate
module. Now when you tap the keys that you have specified in the previously
created configuration, the terminal will show debug information about which key
has been pressed.

irw

when working with some transmitters, there are situations where the bit
descriptions of keys are redundant; in this case, command irw may fail.
To correct this error, open file etc/lirc/lircd.conf and check what the
description of your keys looks like; if it looks like KEY_1 0x00FF6897
0x7EE0CF2C and in all lines the second digits match, you have to remove it,
so that lines with keys assignment looks like KEY_1 0x00FF6897 and all
digits in them are unique. After completing these steps, close the file and
restart the daemon.

If you did everything correctly, upon tapping a key, you will see the output similar
to:

0000000000ff6897 00 KEY_1 pult
0000000000ff6897 01 KEY_1 pult
0000000000ff9867 00 KEY_2 pult
0000000000ff9867 01 KEY_2 pult

This means that your configuration is correctly detected by the program, and now
you can program the desired action for tapping appropriate keys.

Working with IR sensors in Python
To be able to use signals from the IR receiver in Python programs, you'll need
package python-lirc . Install it, if necessary.

For correct obtaining information, create file lircrc in your own script, which will
store settings of your keys and the program response upon calling.

This file is created in the folder from which your script will be called, /home/pi/
by default.

To create the required file, use any text editor:

sudo nano .lircrc

The format of this file should be something like this:

Using FS-A8S

368

begin
prog = myprogram
button = KEY_1
config = one
end

begin
prog = myprogram
button = KEY_2
config = two
end

Where:

 prog is the name of the program that you will call from your script
 key is the name of the key that you entered during transmitter setup
 config is the information to be passed to your program upon tapping a
specified key

All settings are now made, and you can proceed directly to programming IR
signals.

For this purpose, create a Python script that will accept the values of the keys
pressed and perform required action s accordingly. An example of such a script:

import lirc
import fly_module

...

sockid = lirc.init('myprogram')

inf = lirc.nextcode()
if inf[0] == 1:
 print('You pressed key 1')
elif inf[0] == 2:
 print('You pressed key 2')

lirc.deinit()

Working with the IR transmitter
To work with the IR transmitter, connect it to the ports specified during setup.

Using FS-A8S

369

if you are using a ready IR transmitter board, connect it to required pins of
Raspberry in accordance with pins marking, in the same way as with the
receiver.

If everything has been properly connected, you will be able to send signals
specified in transmitter settings using the command:

irsend SEND_ONCE deviceName keyName

Where:

Using FS-A8S

370

SEND_ONCE is the parameter responsible for sending a single signal, or
sending a signal from a depressed and held down key
deviceName is the name of the transmitter specified during setup
keyName is the name of one of the keys specified during transmitter
configuration

To work with irsend inside your script, you'll need module python-irsend ; if
necessary, install it.

To use irsend , import the library and call the appropriate command:

from py_irsend import irsend

irsend.send_once('YourRemote', ['YourKey'])

Where:

YourRemote is the name of your transmitter specified during setup
YourKey is the name of one of the buttons specified during setup

Using FS-A8S

371

Installing and configuring FPV
equipment

Preparing and installing the FPV camera
and transmitter

1. Install the small mounting deck onto the main frame.

2. Install the camera mount bracket into the corresponding holes.

Using FS-A8S

372

3. Cut the three-pin supplied camera cable.

4. Tin the wires

5. Solder the JST-male connector to the power wires of the camera.

Using FS-A8S

373

Check what you are wearing shrink tubes before soldering the wires.

6. Solder the JST male connector to the transmitter.

7. Solder the yellow camera signal cable to the transmitter.

Using FS-A8S

374

8. Connect the antenna to the transmitter.

If voltage is applied to a transmitter without an antenna, there is a high
probability that it will burn out.

9. Place the receiver onto the mounting deck, securing it with ties.

10. Place the mounting deck with the receiver on the bottom of the aircraft.

Using FS-A8S

375

11. Place the camera in the bracket and secure it with the 4 attached bolts. The
camera should be at an angle of 15°-20° relative to the plane of the aircraft.

12. Connect the signal cable to the camera.

Using FS-A8S

376

13. Connect the camera's power cable to the power JST soldered to the BAT+
and GND pads on the power distribution board.

14. Connect the transmitter power cable to JST at 5V.

Setting up and connecting FPV goggles
1. Install the two supplied antennas on the glasses.
2. Turn on the glasses by holding the power button for 3-4 seconds.
3. Turn on the aircraft and make sure the transmitter LED is blue.
4. Press the Auto Search button on the glasses to automatically search for an

available radio channel.

Using FS-A8S

377

Installation of FPV

Preparation of the FPV camera
1. Take the connector wire from the camera and cut off the BLACK side of the

3-pin connector.
2. Prepare the wire leads to be connected:

i. Shorten the wires to the desired length *.
ii. Strip (remove 2 mm of insulation from the end of the wire without

damaging the strands).
iii. Twist the wires.
iv. Blanch using tweezers.

* The distance between the power distribution board and the estimated location of
the camera should be determined in advance!

Preparation of the transmitter
The same procedure applies here:

1. Take the connector wire from the transmitter and cut off the BLACK side of
the 5-pin connector.

2. Prepare the wire leads to be connected:
i. Shorten the wires to the desired length *.
ii. Strip (remove 2 mm of insulation from the end of the wire without

damaging the strands).
iii. Twist the wires.
iv. Blanch using tweezers.

* The distance between the power distribution board and the estimated location of
the transmitter should be determined in advance!

Using FS-A8S

378

Connection of FPV
Prepared connectors are to be inserted into appropriate sockets, and power wires
are to be soldered to the power distribution board according to the circuit diagram:

In this circuit diagram, the camera is powered from 12 V (however, it is
possible to use 5 V). The transmitter is powered from the ESC power
(however, it is possible to use 12 V).

Installing FPV components

Using FS-A8S

379

The following may be used as fastening materials:

1. Hot-melt glue;
2. electrical tape;
3. zip-ties (clamps);
4. double-sided adhesive tape.

Using FS-A8S

380

Assembling and setting up the
electromagnetic gripper
The magnetic gripper can be assembled in various ways according to the wiring
diagram.

The following is an example of assembling an electromagnetic capture circuit on a
breadboard.

It is recommended to lay the wiring between the elements on the back side
of the board (in the following images, the wiring is done over the diagram
for illustrative purpose).

1. Place the Schottky diode, 10K resistor, and transistor on the soldering board.

2. Solder the contacts on the other side of the board and bite off the remaining
element legs.

Using FS-A8S

381

3. Connect the pins of the resistor and the two outer legs of the transistor.

4. Connect the center leg of the transistor and the leg of the Schottky diode
(opposite to the gray marking strip).

5. Cut the required amount of magnetic grab wire and solder it to the pins of the
Schottky diode.

6. Solder the Dupont - male wires to the transistor and diode leg (red, black
wires), and the Dupont - fmale wire to the opposite transistor leg (white wire).

Using FS-A8S

382

Checking the operation of the
electromagnetic gripper
In order to check the operation of the gripper, apply a voltage of 5V to the signal
wire. You can use the Dupont dad-dad wire for that.

After applying voltage, the magnet should turn on.

Connecting to Raspberry Pi
Connect the magnetic gripper to a Raspberry Pi for software activation.

Using FS-A8S

383

An example of the code activating the magnetic gripper can be found here.

Connecting to Arduino
Connect the gripper to the Arduino Nano board in order to control it manually.

It is convenient to place it on the same soldering board — insert it into the
appropriate holes and solder it from the back to the board.

Then connect the signal output of the circuit to the selected port and solder the
Dupont female wire to the selected signal port on the board.

Using FS-A8S

384

Installation of electromagnetic gripper
1. Install an electromagnet into the center hole on the gripper deck.
2. Use a zip tie to pull the assembled circuit to the back of the deck.
3. Plug the Arduino D11 signal pin into one of the AUX pins on the flight

controller.
4. Plug the power wire of the electromagnetic gripper to JST 5V.

Setting up electromagnetic gripper
To control the magnet through Arduino Nano, use the following code:

void setup() {
 pinMode(11, INPUT);
 pinMode(13, OUTPUT);
}

void loop() {
 if (int duration = pulseIn(11, HIGH) > 1200) {
 digitalWrite(13, HIGH);
 } else {
 digitalWrite(13, LOW);
 }
}

To monitor the status of the electromagnetic gripper, you can connect the ws281x
LED strip (included to Clover kit). Connect it to power +5v – 5v, ground GND –
GND, and signal wire DIN – Arduino D12.

To control the magnet and monitor it using the LED strip, use the following code:

Using FS-A8S

385

#include <Adafruit_NeoPixel.h>
#define NUMPIXELS 72
#define PIN 12
int pin = 11;
int led = 13;

unsigned long duration;
Adafruit_NeoPixel strip (NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);

void setup() {
 strip.begin();
 strip.setBrightness(10);
 Serial.begin(9600);
 pinMode(pin, INPUT);
 pinMode(led, OUTPUT);
}

void loop() {
 duration = pulseIn(pin, HIGH);
 Serial.println(duration);
 delay(100);
 if (duration >= 1500) {
 digitalWrite(led, HIGH);
 for (int i = -1; i < NUMPIXELS; i++) {
 strip.setPixelColor(i, strip.Color(255, 0, 0));
 strip.show();
 }
 } else {
 digitalWrite(led, LOW);
 for (int i = -1; i < NUMPIXELS; i++) {
 strip.setPixelColor(i, strip.Color(0, 255, 0));
 strip.show();
 }
 }
}

Using FS-A8S

386

Assembling and setting up a
mechanical gripper

1. Combine the main gripper plates.

2. Install the servo in the appropriate groove in the center of the plates with the
axle gear in the middle.

3. Hold down the gripper plates with the small spacers.

Using FS-A8S

387

4. Install the gripper deck so that the mounting holes in the grapple correspond
with the self-tapping holes in the plate.

5. Fix the gripper structure with self-tapping screws.

6. Turn the servo gear to the end position.

7. Install the cruciform mount onto the gear and secure it using the screw
attached to the servo.

8. Cut the cruciform mount.

Using FS-A8S

388

9. Tie the servo thread so that there is a 2 to 3 cm margin.

10. Thread the servo thread into the corresponding tensioning slots.

Using FS-A8S

389

11. Fasten the grip claws with small self-tapping screws so that their angle is
25°–40°.

12. Install the assembled grip onto the aircraft from below.

13. Insert the servo cable into the AUX 1-2 output on the flight controller.

Using FS-A8S

390

14. Go to the Radio tab to control capture with the remote control.

15. In the AUX 1/2 Passthrough RC channel parameter, select the desired
channel.

16. Now, when you switch the toggle switch of the corresponding channel, the
capture will be closed or opened.

Using FS-A8S

391

FlySky Trainer mode settings
The trainer mode is used for teaching students how to fly a drone. In trainer mode
the experienced pilot is ready to take control of the drone in case of emergency
situation during the flight.

For that we connect two remote controllers. The first controller (Slave) is for a
student and the second (Trainer) is for a teacher.

Wire pinout

To create a link between remote controllers, a connector is used at the back of the
case (S-Video). Three contacts in the connector are used for receiving,
transmitting information and for ground. The PPM-OUT (transmit) contact must be
connected to the PPM-IN (receive) and vice versa. To avoid environmental
interference, ground contacts must be interconnected.

This is how we need to solder the wires to the connector.

Using FS-A8S

392

Trainer’s settings
Go to settings (hold OK button). Then to the System setup and look for (Up /
Down) Trainer mode.

To activate mode, the Mode line should be ‘ON’. Use the Up/Down buttons to
change the parameter. To save the parameter, click OK.

Now select the switch for taking the control:

Do it in the Trainer mode menu. In the Switch line, select (you can change using
Up/Down) any convenient switch (SwA, SwB, SwC, SwD). Trainer now will take
control of the drone after toggling the switching.

To save the settings hold Cancel.

Both teacher’s and student’s remote controllers must be in the same flight
mode.

Student’s settings
Go to the settings, System setup and select the student mode (Student mode).
Then click OK and use Up\Down to select ‘Yes’. Hold Cancel to save the settings.
If everything is configured correctly, the letter S will appear on the main screen.

Using FS-A8S

393

Blanching
Before soldering and blanching, make sure that the wires and the circuit-
boards are disconnected from the power supply (de-energized)!

Blanching contact pads
Blanching a contact pad means doing the following:

1. Apply flux on the contact pad
2. Cover the contact pad with solder

Blanching wires
Blanching a wire means doing the following:

1. Strip the wire to remove the insulation layer
2. Twist stripped wires
3. Apply flux to the twisted stripped wires
4. Apply a layer of solder.

Using FS-A8S

394

Types of power connectors

XT-60
It is one of the most reliable power connectors that they try to use on power
batteries. These specific connectors are used on Li-Po batteries for copters.

T-plug
An analog for XT-60. It has various options for simplifying disconnection.

JST-XH or a balancing connector
Connectors of this type are often used for balancing individual elements in an
assembly of several lithium-polymer (Li-Pol), lithium-ion (Li-ion), or lithium-
phosphate (LiFePO4) batteries. Similar connectors with various numbers of pins
are installed in most modern chargers for balancing the lithium cells during
charging. This connector may be used together with a buzzer (beeper) for
monitoring battery charge.

Using FS-A8S

395

Gold bullet connectors, or bananas
There is a great variety of Gold bullet pin connectors. Connectors of this type may
have different diameters and size. The most widespread connectors are those
with the diameter of 2 mm, 3 mm, and 4 mm. They are often used for solderless
connections on PDB and motors.

Using FS-A8S

396

Connecting 4 in 1 ESCs

4 in 1 ESC circuit board pin-out
Appropriate phase wires and their control signal (Fig. 1b) are marked with the
same color (Fig. 1a).

For example, orange color -> bottom-right motor -> S1 - orange wire.

Pixracer flight controller pin-out
Fig. 2a shows the pin-out of the terminal strip:

SIGNAL — ESC connection. Every pin has its own signal. Pins 5 and 6 can
receive a PWM signal (for example, a servo may be connected).
GND is the ground of the flight controller. A common bus on all GND pins
(marked in black).
1, 2, 3, 4 are ports for connecting ESCs.
1, 2 are ports for expanding the output PWM signal (can be setup in
QGroundControl, can also can be used to control the hexacopter).

Fig. 2b shows motor numbering of the Pixracer flight controller.

The arrow is the flight controller orientation.

Black M3, M4 are the motors that rotate clockwise.
Red M1, M2 are the motors that rotate counter-clockwise.

Picture of the connection, based on the
current orientation of the 4 in 1 ESC
board
Using Fig. 1a, 1b, 2a, 2b, map its own control signal to each motor, and connect
in accordance with the Pixracer motor numbering order.

For example, motor M3 that rotates counter-clockwise (top left corner) is
controlled by signal S4 (green wire). It is connected to port 3.

Using FS-A8S

397

Using FS-A8S

398

Soldering safety
All work involving soldering and blanching should be performed on specially
equipped and prepared premises. There must be a ventilation system.

Before you start, do the following:

1. Tidy up your workplace, nothing should interfere with the process. The
workplace should be well illuminated.

2. The working soldering iron is to be placed in the area of local exhaust
ventilation, in a special holder.

3. Before work, put on a protective gown, goggles, and gloves, if necessary.

When soldering:

1. The soldering iron should be held only by the handle since the tip is hot.

Using FS-A8S

399

2. Items are to only be moved using special tools (tweezers, pliers or other
tools) that ensure safety when soldering.

3. To avoid burns by molten solder when soldering, do not pull the soldered
wires out abruptly with great effort.

4. When soldering small and mobile items use a special holder.

5. Carry the soldering iron by the handle, rather than the cable or the working
part. During breaks, the soldering iron is to be disconnected from the mains.

In case of the soldering iron malfunction or fire, disconnect it from the
mains.

Using FS-A8S

400

Working with a LED strip on
Raspberry 3

Connecting and determining the type of
the strip

The following is applicable to image versions 0.14 and up. For versions
0.13 and older see an older revision of this article

Connect the +5v and GND leads of your LED to a power source and the DIN
(data in) lead to GPIO18 or GPIO21 (by default).

LED strip can consume a lot of power! Powering it from a Raspberry Pi may
overload the computer's power circuitry. Consider using a separate BEC as
a power source.

If you are using GPIO along with the LED strip, connect the strip to
GPIO21. Otherwise you may experience unintended strip behavior.

ROS and Python compatibility

https://github.com/CopterExpress/clover/blob/v0.16/docs/en/leds.md

Using FS-A8S

401

LED strip library requires you to run your Python scripts with sudo . In order to
make it work with ROS nodes you have to add the following lines to your
 /etc/sudoers file on the Raspberry Pi:

Defaults env_keep += "PYTHONPATH"
Defaults env_keep += "PATH"
Defaults env_keep += "ROS_ROOT"
Defaults env_keep += "ROS_MASTER_URI"
Defaults env_keep += "ROS_PACKAGE_PATH"
Defaults env_keep += "ROS_LOCATIONS"
Defaults env_keep += "ROS_HOME"
Defaults env_keep += "ROS_LOG_DIR"

Sample program for the LED strip
The following code lights up the first 10 LEDs on the LED strip. You may use it to
check whether your LED strip works correctly:

You may also want to use additional test scripts from the LED library
repository.

Save the script and run it as root:

import time

from rpi_ws281x import Adafruit_NeoPixel
from rpi_ws281x import Color

LED_COUNT = 10 # Number of LED pixels
LED_PIN = 21 # GPIO pin for the strip
LED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz)
LED_DMA = 10 # DMA channel to use for generating signal (try 10)
LED_BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest
LED_INVERT = False # True to invert the signal (when using NPN transistor
LED_CHANNEL = 0 # Set to '1' for GPIOs 13, 19, 41, 45 or 53

strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT)

strip.begin()

def colorWipe(strip, color, wait_ms=50):

 """Wipe color across strip a pixel at a time."""
 for i in range(strip.numPixels()):
 strip.setPixelColor(i, color)
 strip.show()
 time.sleep(wait_ms/1000.0)

print('Color wipe animations.')
colorWipe(strip, Color(255, 0, 0), wait_ms=100) # Red wipe
colorWipe(strip, Color(0, 255, 0), wait_ms=100) # Blue wipe
colorWipe(strip, Color(0, 0, 255), wait_ms=100) # Green wipe
colorWipe(strip, Color(0, 0, 0), wait_ms=100) # Turn LEDs off

https://github.com/rpi-ws281x/rpi-ws281x-python/blob/master/examples

Using FS-A8S

402

sudo python led_test.py

Basic LED library functions
You'll need to import Adafruit_NeoPixel class and Color function into your
program to interact with the LED strip. Additionally, you'll want the time module
to add delays to your animations:

from rpi_ws281x import Adafruit_NeoPixel
from rpi_ws281x import Color
import time

Instantiate the Adafruit_NeoPixel object and call its begin() method to start
working with the strip:

Main strip control methods:

 numPixels() returns the number of pixels in the strip. Convenient for whole
strip operations.
 setPixelColor(pos, color) sets the pixel color at pos to color . Color
should be a 24-bit value, where the first 8 bits are for the red channel, the
next 8 bits are for the green channel, and the last 8 bits are for the blue
channel. You may use the Color(red, green, blue) convenience function to
convert colors to this format. Each color value should be an integer in the
[0..255] range, where 0 means zero brightness and 255 means full
brightness.
 SetPixelColorRGB(pos, red, green, blue) sets the pixel at pos to the color
value with components red , green and blue . Each component value
should be an integer in the [0..255] range, where 0 means zero brightness
and 255 means full brightness.
 show() updates the strip state. Any changes to the strip state are only
pushed to the actual strip after calling this method.

Does it have to be this way?
The LED strip type used in the Clover kits use the following protocol: a data
source (a Raspberry Pi, for example) sends a bit stream, 24 bits per LED. Each
LED reads the first 24 bits from the stream and sets its color accordingly while
passing the rest of the stream to the next LED. Zeroes and ones are encoded by
different pulse lengths.

Strip object instantiation (parameter description is provided in a code snipp
strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT)
strip.begin()

Using FS-A8S

403

This LED strip is supported by the rpi_ws281x library. The library uses the DMA
(direct memory access) module of the Raspberry CPU and can utilize one of the
three periphery channels: PWM, PCM or SPI. This allows the library to drive the
strip consistently in a multitasking environment.

Each channel has its caveats. Using the PWM prevents you from using the builtin
Raspberry audio subsystem; using the PCM channel will prevent you from adding
I2S (digital audio) devices, although the analog audio will work. SPI requires you
to change your GPU and buffer size and prevents you from using any SPI
devices.

Some DMA channels are reserved for system use. DMA channel 5 is used for SD
card reads and writes, and setting LED_DMA to 5 will corrupt your filesystem.
DMA channel 10 is considered to be safe.

You have the following options for the LED strip:

1. If you don't need onboard audio, you may use the PWM channel and connect
the LED strip to one of the following GPIO pins: 12, 18, 40 or 52 for PWM0
and 13, 19, 41, 45 or 53 for PWM1.

2. If you don't care about SPI devices, you may use the SPI channel for the
LED with GPIO pins 10 or 38. You'll have to perform the following
adjustments:

increase the SPI device buffer by adding spidev.bufsiz=32768 option to
 /boot/cmdline.txt ;
set the GPU frequency to 250 MHz by adding core_freq=250 to
 /boot/cmdline.txt ;
reboot your Raspberry Pi: sudo reboot .

3. If you care about audio and SPI devices, you may want to use the PCM
channel (GPIO 21 or 31). You don't have to reconfigure your Raspberry.

The default option is 3, because it allows the builtin audio system to work and
does not require any modifications to the boot sequence.

https://github.com/jgarff/rpi_ws281x

Using FS-A8S

404

Contribution to Clover
Clover is mostly an open source and open hardware project aimed at lowering the
entry threshold to development of the projects related to flying robotics. You can
contribute to the project by offering fixes and improvements for Clover
documentation and software.

To offer changes to Clover documentation or SW, you should have an
account at GitHub.

Markdown
All Clover documentation is written in the widespread Markdown format. There
are many Markdown guides on the Internet.

In Russian: https://guides.hexlet.io/markdown/.

In English: https://www.markdownguide.org/getting-started,
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet.

For the ease of editing texts, you may use text editors with Markdown support:
Typora, Dillinger (web), VSCode with the Markdown Editor plugin.

We also recommend using the Code Spell Checker VScode plugin.

For a local build of a static documentation website, use the gitbook-cli utility.

Fixing documentation errors
If you have found an error in the documentation or if you want to improve it, use
the Pull Request mechanism.

1. Find a file with the article you want in the repository –
https://github.com/CopterExpress/clover/tree/master/docs.

2. Click "Edit".

3. Make the necessary changes.

4. Click "Propose file change".
5. Describe the change you have made, and click "Create a Pull Request".
6. Wait for your changes to be approved :)

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open-source_hardware
https://github.com/
https://en.wikipedia.org/wiki/Markdown
https://guides.hexlet.io/markdown/
https://www.markdownguide.org/getting-started
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
https://typora.io/
https://dillinger.io/
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=MadsKristensen.MarkdownEditor
https://marketplace.visualstudio.com/items?itemName=streetsidesoftware.code-spell-checker
https://github.com/GitbookIO/gitbook-cli
https://github.com/CopterExpress/clover/tree/master/docs

Using FS-A8S

405

More information about Pull Requests is available at GitHub (English) or in GIT
documentation (Russian).

Contributing a new article
If you've made your own project based on Clover, you can add an article
about it to the "Clover-based projects" section.

Prepare your article and send it as a pull request to the Clover repository.

1. Fork the Clover repository:

2. Check out the freshly-forked repository on your computer:

 git clone https://github.com/<USERNAME>/clover.git

3. Open the directory with the source code checkout and create a new branch
for your article (for example, new-article):

 git checkout -b new-article

4. Write a new article in the Markdown format and save it in the docs/ru or
 docs/en folder (for example, docs/en/new_article.md). Don't forget to give
you contacts (e-mail / Telegram / ...) in articles on your projects.

5. Place additional visual assets in the docs/assets folder and add them to
your article.

6. Add a link to your article to the appropriate section in the SUMMARY.md file (in
the same folder as in the fourth step):

 ...
 * Supplementary materials
 * [COEX Pix](coex_pix.md)
 * [Contribution guidelines](contributing.md)
 * [New article](new_article.md)
 * [RC troubleshooting](radioerrors.md)
 * [Flashing ESCs](esc_firmware.md)
 ...

7. Commit your changes locally:

 git add docs/
 git commit -m "Add new article for Clover"

8. Upload your branch to your forked repository on GitHub:

https://help.github.com/articles/about-pull-requests/
https://git-scm.com/book/ru/v2/GitHub-contributing-to_projects
https://github.com/CopterExpress/clover
https://en.wikipedia.org/wiki/Markdown

Using FS-A8S

406

 git push -u origin new-article

9. Open your repository on GitHub and send a pull request from your branch
to Clover:

10. Wait for the review, be ready to make changes if needed.

11. Look at your new and useful article at https://clover.coex.tech !

Easy way
If the above instructions are too difficult for you, send your fixes and new articles
by e-mail (okalachev@gmail.com) or in Telegram messenger (user @okalachev).

Publishing packages
You also can publish a package, that extends Clover functionality, into the official
COEX Debian repository.

https://clover.coex.tech/
mailto:okalachev@gmail.com
tg://resolve?domain=okalachev

Using FS-A8S

407

COEX packages repository
COEX provides an open Debian-repository with ROS Noetic related prebuilt
binary pacakges for armhf architecture.

Repository URL: http://packages.coex.tech.

The repository is already addedd in RPi image and may be used for simple
installation of additional ROS packages.

Packages publishing
You can make a Pull Request in a git repository with packages, adding or
updating your package (a file with .deb extension), that relates to Clover or
ROS. After merging your package will be available for installation with apt utility:

sudo apt install ros-noetic-clover-some-feature

Packages, that extend Clover functionality are recommended to be named with
 clover_ prefix, e. g. clover_some_feature .

Using on a normal Raspberry Pi OS
On a normal Raspberry Pi OS, the repository may be added to the sources list,
this way:

wget -O - 'http://packages.coex.tech/key.asc' | apt-key add -
echo 'deb http://packages.coex.tech buster main' >> /etc/apt/sources.list
sudo apt update

https://wiki.debian.org/DebianRepository
http://packages.coex.tech/
https://github.com/CopterExpress/packages

Using FS-A8S

408

Migration to version 0.20
Image version v0.20 includes significant changes in comparison with the version
0.19. When transitioning please note the changes presented below.

ROS package clever is renamed to
 clover

All the imports in Python scripts should be changed.

Before:

import rospy
from clever import srv
from std_srvs.srv import Trigger

rospy.init_node('flight')

get_telemetry = rospy.ServiceProxy('get_telemetry', srv.GetTelemetry)
navigate = rospy.ServiceProxy('navigate', srv.Navigate)
navigate_global = rospy.ServiceProxy('navigate_global', srv.NavigateGlobal)
set_position = rospy.ServiceProxy('set_position', srv.SetPosition)
set_velocity = rospy.ServiceProxy('set_velocity', srv.SetVelocity)
set_attitude = rospy.ServiceProxy('set_attitude', srv.SetAttitude)
set_rates = rospy.ServiceProxy('set_rates', srv.SetRates)
land = rospy.ServiceProxy('land', Trigger)

Take off 1 m
navigate(x=0, y=0, z=1, frame_id='body', auto_arm=True)

After:

import rospy
from clover import srv
from std_srvs.srv import Trigger

rospy.init_node('flight')

get_telemetry = rospy.ServiceProxy('get_telemetry', srv.GetTelemetry)
navigate = rospy.ServiceProxy('navigate', srv.Navigate)
navigate_global = rospy.ServiceProxy('navigate_global', srv.NavigateGlobal)
set_position = rospy.ServiceProxy('set_position', srv.SetPosition)
set_velocity = rospy.ServiceProxy('set_velocity', srv.SetVelocity)
set_attitude = rospy.ServiceProxy('set_attitude', srv.SetAttitude)
set_rates = rospy.ServiceProxy('set_rates', srv.SetRates)
land = rospy.ServiceProxy('land', Trigger)

Take off 1 m
navigate(x=0, y=0, z=1, frame_id='body', auto_arm=True)

systemd service clever is renamed to
 clover

For restarting the platform instead of:

Using FS-A8S

409

sudo systemctl restart clever

use command:

sudo systemctl restart clover

Path to platform's files changed
The ~/catkin_ws/src/clever/ directory is renamed to ~/catkin_ws/src/clover .
Thus, configuration files (*.launch) are to be edited using the new path.

For example, ~/catkin_ws/src/clever/clever/launch/clever.launch file is now
 ~/catkin_ws/src/clover/clover/launch/clover.launch .

Wi-Fi network configuration
Wi-Fi networks' SSID is changed to clover-XXXX (where X is a random number),
password is changed to cloverwifi .

The camera orientation configuration
changed
See details in the "Camera setup" article.

Using FS-A8S

410

Migration to version 0.22

Python 3 transition
Python 2 is deprecated since January 1st, 2020. The Clover platform moves to
Python 3.

For running flight script instead of python command:

python flight.py

use python3 command:

python3 flight.py

Python 3 has certain syntax differences in comparison with the old version.
Instead of print operator:

print 'Clover is the best' # this won't work

use print function:

print('Clover is the best')

The division operator operates floating points by default (instead of integer).
Python 2:

>>> 10 / 4
2

Python 3:

>>> 10 / 4
2.5

For strings unicode type is used by default (instead of str type).

Encoding specification (# coding: utf8) is not necessary any more.

More details on all the language changes see in appropriate article.

Move to ROS Noetic

https://www.python.org/doc/sunset-python-2/
https://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

Using FS-A8S

411

ROS Melodic version was updated to ROS Noetic. See the full list of changes in
the ROS official documentation.

Changes in launch-files
Configuration of ArUco-markers navigation is simplified. See details in markers
navigation and markers map navigation articles.

http://wiki.ros.org/noetic/Migration

Using FS-A8S

412

Events
Clover is being used in a lot of educational events and competitions, such as
WorldSkills, NTI Olympics, Copter Hack, Innopolis Open Robotics, etc.

This section contains articles written specifically for a particular event.

Using FS-A8S

413

CopterHack 2023
CopterHack 2023 is an
international open-source
projects competition on
aerial robotics. The main
direction of the
CopterHack is team
competition with a free choice of the project topic. The competition’s official
language is English.

To learn more about the articles of the CopterHack finalist teams follow the links
CopterHack 2021, CopterHack 2022.

The proposed projects are supposed to be open-source and be compatible with
the Clover quadcopter platform. Teams-participants are supposed to work on their
projects throughout the competition, bringing them closer to the state of the
finished product while being assisted by industry experts through lectures and
regular feedback.

Final of the CopterHack 2022 was held on May 27, 2023. The winner team was
the team Á Clover Cloud Platform.

Full stream of the final

Projects of the contest's participants

Using FS-A8S

414

Place Team Project Points

1 Á Clover Cloud
Team Clover Cloud Platform 21.7

2 % FTL Advanced Clover 2 21

3
' Clover with
Motion Capture
System

Clover with Motion Capture
System 20.5

4 ! Atena Swarm in Blocks 2 20.3

5 Á C305 Система радио-навигации 17.5

6 � DJS PHOENIX Autonomous Racing Drone 14.6

7 Á Lyceum №128 Network of Clover charging
stations 13.7

✕ � Zavarka Система обмена грузами
с помощью конвейера

✕ Á FSOTM Drone Interceptor

✕ � Homelesses Trash Collector

✕ Á Digital otters Digital otters

✕ Á Light Flight Сопровождение БПЛА
при посадке

✕ � LiveSavers LiveSavers

✕ Á XenCOM Bound by fate

✕ Á Ava_Clover DoubleClover

✕ Á TPU_1 Совместная
транспортировка груза

✕ Á TPU_2 Алгоритм полета сквозь
лесную местность

See all points by criteria in the full table.

CopterHack 2023 stages
The qualifying and project development stages will be held in an online format,
however, the final round will be in a hybrid mode (offline + online). The
competition involves monthly updates from the teams with regular feedback from
the jury. All teams are required to prepare a final video and presentation on the
project's results to participate in the final stage.

1. Qualifying stage. Applications are accepted on the deadline date until
October 31, 2022.

2. Projects development stage. This stage includes monthly updates and
mentorship of participants. Starting date - November 1, 2022. Deadline date -
February 28, 2023.

file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/nav-beacon.html
https://github.com/aiurobotics/clover/blob/conveyance/docs/ru/conveyance.md
https://github.com/deadln/clover/blob/interceptor/docs/ru/interceptor.md
https://github.com/Isa-jesus/clover/blob/trash-collector/docs/ru/show_maker.md
https://github.com/Mentalsupernova/clover_cool/blob/new-article.md/docs/ru/new-article.md
https://github.com/SirSerow/clover_inertial_ns/blob/inertial-1/Description.md
https://github.com/Sarvar00/clover/blob/livesavers/docs/ru/livesaver.md
https://github.com/xenkek/clover/blob/xenkek-patch-1/docs/ru/bound_by_fate.md
https://github.com/bessiaka/clover/blob/Ava_Clover/docs/ru/soosocta.md
https://github.com/shamoleg/clover/blob/tpu_1/docs/ru/tpu_1.md
https://github.com/shamoleg/clover/blob/tpu_2/docs/ru/tpu_2.md
https://docs.google.com/spreadsheets/d/1qTpW8zFVdSEGnbtOvMgQD6DcYwu8URFt1RKOCeUaOe8

Using FS-A8S

415

3. All teams-participants are required to make the final video to proceed to the
final round. Final videos are required to be uploaded until March 31, 2023.

4. The final round. Projects presentation takes place April 23, 2023.

Conditions and criteria for evaluation the
final result
General project requirements:

1. Open-source.
2. Compatibility with the Clover platform.

Judging criteria for the jury at the final:

1. Readiness and the article (max. 10 points): the degree of readiness of the
project; an accessible and understandable description of the project in the
article; a link to the code with comments, diagrams, drawings. It should be
possible to reproduce the project and get the result according to the article.

2. Amount of work done (max. 6 points): the amount of work done by the team
in the framework within of CopterHack, its complexity, and the technical level.

3. Usefulness for Clover (max. 6 points): the relevance to the Clover and PX4
platform application in practice, the potential level of demand from other
Clover users.

4. Presentation at the final (max. 3 points): quality and entertainment points of
the final presentation; completeness of the project coverage; demonstration;
answers to the jury's questions.

Prize fund
Basing on the results of the evaluation of projects at the final round, the jury will
select the winners with the following prizes.

1st place: $3000 (USD).
2nd place: $2000 (USD).
3rd place: $1000 (USD).
4th place: $500 (USD).
5th place: $500 (USD).

The competition partners can reward the teams according to additional criteria
identified during the evaluation of projects during the final round.

How to apply?
In order to be able to apply, you must have an account on GitHub.

Prepare your application and send it as a Draft Pull Request to Clover repository

1. Fork the Clover repository:

https://github.com/
https://github.com/CopterExpress/clover

Using FS-A8S

416

2. On the web page of your fork, go to the docs/en section and create a new
file in the Markdown format:

3. Enter the title of your article. For example, new-article.md

4. Fill in your application by the recommended template:

5. Go to the bottom of the page and create a new branch with the title of your
article:

Project name

[CopterHack-2023](copterhack2023.md), team **Team name**.

Team information

The list of team members:

(Describe the team: full name, contacts (Telegram username), role in the t

* Alexander Sokolov, @aleksandrsokolov111, engineer.
* Elena Smirnova, @elenasmirnova111, programmer.

Project description

Project idea

Briefly describe the idea and stage of the project.

The potential outcomes

Describe how you see the project result.

Using Clover platform

Describe how the Clover platform will be used in your project.

Additional information at the request of participants

For example, information about the team's experience while working on proj

http://en.wikipedia.org/wiki/Markdown

Using FS-A8S

417

Don't commit changes directly to the master branch, create a new
branch.

6. If necessary, place additional visual assets in the docs/assets folder and
add them to your article.

7. Send a Draft Pull Request from your branch to Clover:

8. In the Pull Request comments, you will be given feedback on the application.

9. Please note, in the Checks block the Documentation field should contain a
tick, id cross appeared, click Details link to see the list of issues in you article
found by markdownlint. If you need to change added files, edit them in you
branch – changes will appear in the Pull Request automatically. Do not open
a new Pull Request for the same application.

10. During the contest, you will work on this document, bringing it closer to the
finished state. By the end of the contest you are expected to publish your
article which is supposed to be the result of your work in CopterHack.

Teams-participants are supposed to be added to the special Telegram group,
where one can send the project's updates and get feedback from the Jury. For all
participating teams, COEX will provide a 40% discount on the Clover drone kit.

There are no restrictions on the age, education, and number of people in a
team.

CopterHack 2023 projects’ papers
contest
Our participants have been engaged in advanced projects in the field of aerial
robotics for already two years. This year we are planning to launch a new type of
contest stimulating participants to present the research results running within the
whole contest, at high -level international conferences as well as to publish them
in Russian and international magazines in thematic areas.

Original articles are accepted in following nominations:

Using FS-A8S

418

$2000 (USD) for an article in a magazine of first quartile (Q1), indexed in
Scopus, Web of Science.
$1000 (USD) for an article in a magazine, indexed in Scopus, Web of
Science.
$500 (USD) for an article, published in Compendium (Conference
Proceedings), indexed in Scopus, Web of Science.

Easy way to find quartiles for journals in Web of Science and Scopus.

Requirements:

1. The article is required to reflect the results of the project, developed within
CopterHack 2023.

2. The article is required to be accepted for publication by the moment of
application for the Contest.

3. It is required to indicate in the acknowledgement area that work is
accomplished within the Contest.

Applications deadline: December 10, 2023. The application for the contest
should be submitted through the Google Form.

Results announcement: December 24, 2023.

For all questions: CopterHack in Telegram.

Please contact Oleg Ponfilenok in Telegram if you are interested in
becoming the contest's partner or jury member.

https://www.texpedi.com/2021/07/how-to-find-journal-quartile.html
https://docs.google.com/forms/d/e/1FAIpQLSf52x0CTur-wUCG2URwY-p85gEUBUvgC0mPVNot0RHVjqcLZA/viewform
https://t.me/CopterHack
https://t.me/ponfilenok

Using FS-A8S

419

CopterHack 2022
CopterHack 2022 is an
international open-source
projects competition on
aerial robotics. The
mainstream of the
CopterHack 2022 is team
competition with a free
choice of the project topic. In addition, this year we organized a second category,
company cases. The competition’s main language is English.

You can see the articles of the CopterHack 2021 finalist teams by the link
CopterHack 2021.

The proposed projects have to be open-source and be compatible with the Clover
quadcopter platform. Teams will work on their projects throughout the competition,
bringing them closer to the state of the finished product. Industry experts will
assist the participants through lectures and regular feedback.

Final of the CopterHack 2022 was held on April 23, 2022. The winner team was
the team � Atena - Grupo SEMEAR.

Full stream of the final

Aftermovie

Using FS-A8S

420

Projects of the contest's participants

Using FS-A8S

421

Place Team Project Points

1
! Atena -
Grupo
SEMEAR

Swarm in Blocks 21.6

2 % FTL Advanced Clover 2 19.9

3 Á Clover
Rescue Team Rescue Clover 17.7

4 Á С305 Система мониторинга воздуха 17.3

5 Á Space
clowns Copter For Space 16.2

6 Á CopterCat CopterCat 16.1

7 Á Stereo Neural obstacle avoidance 15.85

8 � DJS
Phoenix

Autonomous valet parking drone
assistance 11.7

✕ Á R.S. Drone Hawk

✕ � Moopt IoT Water Monitoring &
Optimization

✕ Á Дрой Ронов Clover Swarm

✕ Á SPECTRE SPECTRE

✕
� Alatoo
University
Team

Облачная платформа для
симулятора Клевера

✕ Á Clevertron Clevertron

✕ µ Edgenoon Neural and vision-based landing
method

✕ ; Inondro Inondro Pix

✕ Á SolidEye Разработка лидара без
движущихся частей

✕ �

AI_U_CLOVER AIU_CLOVER

✕ �

Dragon&Tanker Dragon&Tanker

✕ Á V-NAV Visual Navigation

✕ Á Джедаи
1581 Ретранслятор на базе Клевера

✕ Á Lucky flight Swarm of Improved Clover

✕ ë EnviroFleet EnviroFleet

✕ Á Бизнес-
гуси Drone Rover Climbing System

✕ Á fuall Доставка дронами

file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/advanced_clover_simulator.html
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/air_monitor.html
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/c4s.html
https://github.com/slavaroot/clover/blob/droneHawkSecurity/docs/ru/drone-hawk-security.md
https://github.com/kafechew/clover/blob/master/docs/en/moopt-uav.md
https://github.com/stinger000/clever/blob/clover_swarm_request/docs/ru/clover-swarm.md
https://github.com/alakhmenev/clover/blob/spectre_team/docs/ru/spectre_team.md
https://github.com/pteacher/clover/blob/clover_simulator/docs/ru/clover-development-studio.md
https://github.com/Daniel-drone/clover/blob/Clevertron-1/docs/ru/clevertron.md
https://github.com/edgenoon-ai/clover/blob/neural_vision_based_landing_method/docs/en/neural_vision_based_landing_method.md
https://github.com/Inondro/clover/blob/inondro-pix/docs/en/inondro_copterhack22_pix.md
https://github.com/feanorgg/clover/blob/solideye/docs/ru/solid_eye.md
https://github.com/zhibekm/clover/blob/zhibekm-patch-1/docs/en/aiu-article.md
https://github.com/uml4/clover/blob/drone_observe_autonomous_car/docs/en/dragon_and_tanker_team.md
https://github.com/v-nav/clover/blob/v-nav_article/docs/ru/v-nav.md
https://github.com/JJNIK/clover/blob/patch-1/docs/ru/1581.md
https://github.com/bessiaka/clover/blob/Lucky-flight/docs/ru/lucky_flight.md
https://github.com/gueyman/clover/blob/envirofleet/docs/en/enviro_fleet.md
https://github.com/HexaHEX/clover/blob/CopterHack2022_Business_Geese-1/docs/ru/business_geese.md
https://github.com/Silly4s/clover/blob/master/docs/ru/dostavka.md

Using FS-A8S

422

Place Team Project Points

✕ Á

Scout_Drone

Создание поисково-
спасательного беспилотного
летательного аппарата

✕ – teams which haven't qualified for the Final.

See all points by criteria in the full table.

Company case competition
Teams are welcome to dive into the development of the following company cases:

1. Develop the Pixhawk FMUv6U flight controller board with the dimensions
55x40 mm and the compatibility of a Raspberry Pi CM 4 installation.

2. Cloud platform for the Clover simulator similar as to/based on ROS
Development Studio.

The list of cases may be expanded in future.

CopterHack 2022 stages
The qualifying and project development stages will be held in an online format.
The final round will be in a hybrid mode (offline + online). The competition
involves monthly updates from the teams with regular feedback from the Jury. All
teams have to prepare a final video and presentation about the project's results to
participate in the final stage.

1. Qualifying stage. Applications are welcome due October 31, 2021.
2. Projects development stage. This stage includes monthly updates and

mentorship of participants, starts at June 10, 2021, and continuous until
February 28, 2022.

3. All participating teams should shoot the final video to proceed to the final
round. Final videos have to be submitted from March 1 up to March 31, 2022.

4. The final round. Projects presentation at April 9–10, 2022.

Conditions and criteria for evaluating the
final result
General project requirements:

1. Open-source.
2. Compatibility with the Clover platform.

Criteria for judging the jury at the final:

1. Readiness and the article (max. 10 points): the degree of readiness of the
project; an accessible and understandable description of the project in the
article; a link to the code with comments, diagrams, drawings. It should be
possible to reproduce the project and get the result according to the article.

https://github.com/MustafaNatur/clover/blob/Scout_Drone.md/docs/ru/scout_drone.md
https://docs.google.com/spreadsheets/d/1qVoXchDbaBlbFzVCyxFZDU6pp8pvC1oXasowr56tnzc
https://clover.coex.tech/ru/simulation.html
https://app.theconstructsim.com/

Using FS-A8S

423

2. Amount of work done (max. 6 points): the amount of work done by the team
in the framework of CopterHack 2022, its complexity, and the technical level.

3. Usefulness for Clover (max. 6 points): the relevance to the Clover and PX4
platform application in practice, the potential level of demand from other
Clover users.

4. Presentation at the final (max. 3 points): quality and entertainment of the final
presentation; completeness of the project coverage; demonstration; answers
to the jury's questions.

Prize fund
The mainstream of the CopterHack 2022 involves the following prizes from COEX
based on the results of the jury's evaluation of projects at the final round:

1st place: $3000 (USD).
2nd place: $2000 (USD).
3rd place: $1000 (USD).
4th place: $500 (USD).
5th place: $500 (USD).

The competition partners can reward the teams according to additional criteria
identified due to the evaluation of projects during the final round.

The company case competition provides a prize of $2500 (USD) from COEX for
further project development for the best teams in each cases.

How to apply?
To apply, you should have an account on GitHub.

Prepare your application and send it as a Draft Pull Request to Clover repository

1. Fork the Clover repository:

2. On the web page of your fork, go to the docs/en section and create a new
file in the Markdown format:

3. Enter the title of your article. For example, new-article.md

https://github.com/
https://github.com/CopterExpress/clover
http://en.wikipedia.org/wiki/Markdown

Using FS-A8S

424

4. Fill out your application by the recommended template:

5. Go to the bottom of the page and create a new branch with the title of your
article:

Don't commit changes directly to the master branch, create a new
branch.

6. If necessary, place additional visual assets in the docs/assets folder and
add them to your article.

7. Send a Draft Pull Request from your branch to Clover:

Project name

[CopterHack-2022](copterhack2022.md), team **Team name**.

Team information

The list of team members:

(Describe the team: full name, contacts (e-mail/Telegram username), role i

* Alexander Sokolov, @aleksandrsokolov111, engineer.
* Elena Smirnova, @elenasmirnova111, programmer.

Project description

Project idea

Briefly describe the idea and stage of the project.

The potential outcomes

Describe how you see the project result.

Using Clover platform

Describe how the Clover platform will be used in your project.

Additional information at the request of participants

For example, information about the team's experience working on projects,

Using FS-A8S

425

8. In the Pull Request comments, you will be given feedback on the application.
On the contest page, in the section "Projects of the contest participants", a
link to your application in your fork will be published.

9. Note the Checks block at the bottom, a check mark should appear in the
Documentation field. If a cross appeared, click Details link to see the list of
issues in you article found by markdownlint. If you need to change added
files, edit them in you branch – changes will appear in the Pull Request
automatically. Do not open a new Pull Request for the same application.

10. During the contest, you will work on this document, bringing it closer to the
state of the finished article. By the end of the contest, you will publish your
article, which will be the result of your work in CopterHack 2022.

As soon as the link to the application is added to this page in the section "Projects
of the contest's participants", your team has become an official participant of the
CopterHack 2022!

Contest participants will be added to the special Telegram group, where one can
send the project's updates and get feedback from the Jury. For all participating
teams, COEX will provide a 50% discount on the Clover drone kit.

There are no restrictions on the age, education, and number of people in
the team.

For all questions: CopterHack 2022.

https://t.me/CopterHack

Using FS-A8S

426

CopterHack 2021
CopterHack 2021 is a team competition for the development of open source
projects for the Clover quadcopter platform. Fifty-four teams from 12 countries
took part in the competition.

All information about the event can be found on the official website:
https://coex.tech/copterhack.

Full stream of the final: https://www.youtube.com/watch?v=Z06vxuAHmuE.

Aftermovie

https://coex.tech/copterhack
https://www.youtube.com/watch?v=Z06vxuAHmuE

Using FS-A8S

427

Participating teams articles

Using FS-A8S

428

Place Team Project Points

1 % FTL AdvancedClover 18.8

2 Á

EasyToFly EasyToFly 18.5

3 ; ADDI 3D-printed generative design frame 17.8

4 w AT
Makers D-drone Graffiti-copter 16.7

5 ½ DroMap The Indoor Mapping Drone 16.5

6 w

MINIONS Seed spreading quadcopter 15.5

7 Á

Hardaton Хардатон Квиддич 15.48

8 Á Atomic
Ferrets Система засечки для дронов 15

9
Á Drones
to fight
Corona

Drones to fight Corona 14.6

10 Á AMLS Autonomous Multirotor Landing
System 12.8

11 Á

PаD30DЖ
Октокоптер со специфичным
расположением пропеллеров 11.6

12 Á Zaural
Viking

Программируемый летающий
автомобиль 11.4

13
� Bennie
and the
Jetson TX2

Retail Drone 9.8

14
� Blue
Jay
Eindhoven

Designing a drone and a path
planning algorithm 9.6

15 Á

ProCleVeR

Разработка системы для
управления БПЛА с помощью
шлема виртуальной реальности

8.5

16 Á

Quadrotor Дрон-Агроном 7.7

See points by criteria in the full table.

file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/advanced_clover.html
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/easytofly.html
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/hardaton_quidditch.html
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/race_timing_sys_copterhack.html
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/oktazodg.html
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/zaural_viking.html
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/remote-control-with-oculusvr.html
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/drone-agronom.html
https://docs.google.com/spreadsheets/d/1L9NDrw4c4vTCIVR3aC8ErAjxnuBg-Afil9AwUQZVJ5I/edit?usp=sharing

Using FS-A8S

429

Copter Hack 2019
The Copter Hack 2019 hackathon took place on the 11th to 13th of October in the
"Moscow" Technopolis.

Event page: https://coex.tech/copterhack.

Hackathon chat: https://t.me/CopterHack.

Timepad event page: https://copterexpress.timepad.ru/event/1017592/.

Information for participants

COEX Pix specifics

Be sure to set the Autopilot orientation parameter to ROTATION_ROLL_180_YAW_90 if
you're using the COEX Pix flight controller. This parameter should be applied
during calibration of each sensor.

This parameter is used for IMU orientation correction.

Suggested image versions

Raspberry Pi versions 3B+ and lower: v0.18

Raspberry Pi version 4: v0.19-alpha.1

Camera orientation

Some drones have the camera mounted with the cable going forward. You should
set this orientation in the main_camera.launch file in the clever package.

Further reading: Camera orientation

Using Optical Flow

In order to enable optical flow set optical_flow and rangefinder_vl53l1x
parameters to true in clever.launch .

Enable pub agl as lpos down in LPE_FUSION parameter using QGroundControl.

Make sure the rangefinder is mounted correctly and is working (see Interfacing
with a laser rangefinder).

Further reading: Optical Flow.

https://copterexpress.timepad.ru/event/1017592/
https://coex.tech/copterhack
https://t.me/CopterHack
https://copterexpress.timepad.ru/event/1017592/
https://github.com/CopterExpress/clover/releases/tag/v0.18
https://github.com/CopterExpress/clover/releases/tag/v0.19-alpha.1

Using FS-A8S

430

Using ArUco map

Use the cmit.txt map. See instructions.

Drone batteries

The battery indicator should be connected to the battery at all times. The
organizers will not replace your damaged batteries!

Flight videos

Be sure to record ALL your flights on video! If your drone fails before your
presentation, you'll be able to at least show your videos.

Yaw problem

The v1.8.2-clever.7 FCU firmware has a potential bug that manifests during VPE
(marker-based) flights. If your drone does not correct its yaw when using ArUco
markers, try using an older firmware version (v1.8.2-clever.6, available from
https://github.com/CopterExpress/Firmware/releases/tag/v1.8.2-clever.6).
Download px4fmu-v4_default.px4 for COEX Pix.

 navigate service problem

The 0.18 Raspberry Pi image has a potential bug that makes the drone fly
through waypoints too fast. Try setting the nav_from_sp parameter to false in
 ~/catkin_ws/src/clever/clever/launch/clever.launch if you are affected by it:

Lectures (in Russian)
Lecture 1: Introduction – https://www.youtube.com/watch?v=cjtmZNuq7z0.

Lecture 2: FCU setup – https://www.youtube.com/watch?v=PJNDYFPZQms.

Lecture 3: PX4 architecture – https://www.youtube.com/watch?v=_jl7FImq3jk.

Lecture 4: Autonomous flights – https://www.youtube.com/watch?v=ThXiNG1IzvI.

Be sure to check out other videos on the COEX YouTube channel:
https://www.youtube.com/channel/UCeCu93sLBkcgbIkIC7Jaauw/featured.

Results

<!-- simplified offboard control -->
<node name="simple_offboard" pkg="clever" type="simple_offboard" output="screen
 <param name="reference_frames/body" value="map"/>
 <param name="reference_frames/base_link" value="map"/>
 <param name="reference_frames/navigate_target" value="map"/>
 <param name="reference_frames/navigate_target" value="map"/>
 <param name="nav_from_sp" value="false"/>
</node>

https://github.com/CopterExpress/Firmware/releases/tag/v1.8.2-clever.6
https://www.youtube.com/watch?v=cjtmZNuq7z0
https://www.youtube.com/watch?v=PJNDYFPZQms
https://www.youtube.com/watch?v=_jl7FImq3jk
https://www.youtube.com/watch?v=ThXiNG1IzvI
https://www.youtube.com/channel/UCeCu93sLBkcgbIkIC7Jaauw/featured

Using FS-A8S

431

Winners:

1. Bulbolet – potato delivery using a smart hoist.
2. Copter don't hurt me – controlling drone using a neural interface.
3. import torch – active track using neural networks.
4. Autobot – freeze light through a VK bot.
5. Stardust Crusaders – AR drone simulation.

Using FS-A8S

432

Copter Hack 2018
Hackathon Copter Hack 2018 was held on October 19 – 21 at the Moscow
Technopolis.

Hackathon chat: https://t.me/CopterHack.

Hackathon stream: https://www.youtube.com/watch?v=nIo5HSqlt6I.

Hackathon photos: https://drive.google.com/open?
id=1ozdXol4rhKwhHbsrnfxrp3CqazBRm-3W.

Videos

https://copterexpress.timepad.ru/event/768108/
https://t.me/CopterHack
https://www.youtube.com/watch?v=nIo5HSqlt6I
https://drive.google.com/open?id=1ozdXol4rhKwhHbsrnfxrp3CqazBRm-3W

Using FS-A8S

433

Lectures
Lecture 1: assembly — https://www.youtube.com/watch?v=gEs-w7BRPM8.

Lecture 2: setup — https://www.youtube.com/watch?v=sPqSCCmgdG0.

Lecture 3: PX4 firmware — https://www.youtube.com/watch?v=WFnZAIypgMQ.

Lecture 4: Autonomous flights — https://www.youtube.com/watch?
v=gD6a7aSEf9M.

Results
Winning teams:

1. Starshine (Moscow) — controlling the drone using a "smart" glove.
2. Alcopter (Moscow) — controlling the drone with gestures and pose change.
3. Merry copter (Samara) — a Vkontakte bot for controlling the copter, a joint

flight of "Zhuzha" and "Clover 3".
4. International Post (Novosibirsk) — automatic scattering leaflets from the

drone.
5. LAMAR (Yekaterinburg) — an automatic quadcopter battery replacement

station.

https://www.youtube.com/watch?v=gEs-w7BRPM8
https://www.youtube.com/watch?v=sPqSCCmgdG0
https://www.youtube.com/watch?v=WFnZAIypgMQ
https://www.youtube.com/watch?v=gD6a7aSEf9M

Using FS-A8S

434

Using FS-A8S

435

Copter Hack 2017
On July 28 – 30, 2017, Copter Express held a hackathon named "Copter Hack
2017", where the objective was to program a Clover to dance-fly autonomously to
random music.

The team "Pangolins" became the winners.

Video lectures are available at https://copterexpress.timepad.ru/event/510375/.

Modules
Navigation in the marker field and simplified copter control:
https://github.com/CopterExpress/marker_navigator (installed on the flash
drive)

ROS module for communication with the music server
https://github.com/CopterExpress/copter_hack_music (installed on a flash
drive)

the source of the music server
https://github.com/CopterExpress/copter_hack_music_server

Viewing video from the camera
To run on Raspberry:

rosrun web_video_server web_video_server

In the browser, open webpage http://<ip raspberry>:8080 .

https://copterexpress.timepad.ru/event/510375/
https://github.com/CopterExpress/marker_navigator
https://github.com/CopterExpress/copter_hack_music
https://github.com/CopterExpress/copter_hack_music_server

Using FS-A8S

436

Attention: Video stream distribution greatly reduces the performance of marker
recognition for the flight.

SSID Wi-Fi
To change the SSID of distributed Wi-Fi you should change the SSID parameter
in any way in file /etc/hostapd/hostapd.conf .

The list of recognized markers

rostopic echo /marker_data

Helpful articles
Copter setup

Flight modes

MAVRos package

A good introductory article: https://habrahabr.ru/post/227425/

Signals used in drones: https://geektimes.ru/post/258186/

A good article about PIDs:
https://habrahabr.ru/company/technoworks/blog/216437/

Video lectures are available at
https://copterexpress.timepad.ru/event/510375/.

Aubio, a library for sound (music) analysis

Packages for Python for working with music:
https://wiki.python.org/moin/PythonInMusic

https://habrahabr.ru/post/227425/
https://geektimes.ru/post/258186/
https://habrahabr.ru/company/technoworks/blog/216437/
https://copterexpress.timepad.ru/event/510375/
https://aubio.org/
https://wiki.python.org/moin/PythonInMusic

Using FS-A8S

437

Contest for the best educational
video on assembly and configuration
Requirements:

the video contains the entire process of assembling and configuring the
Clover 4.2 drone kit: from opening the box with components to flying the
copter in Position mode using ArUco markers;
the video is uploaded to YouTube and is public accessible;
the video contains voice-over in English;
the video lasts from 6 to 60 minutes.

Dates of the contest: February 12 – December 13, 2021.

Prizes
v 1st place: $500 (USD).
w 2nd place: $300 (USD).
x 3rd place: $200 (USD).

Results

Place Participant Link to the video

1 Á Philipp
Batalin

https://www.youtube.com/watch?
v=f0rpdulOSEk

2 q Sara
Pettinari

https://www.youtube.com/watch?
v=PxxfyVH6RRA

3 Kai Feng
Chew

https://www.youtube.com/watch?
v=skgSwFle6Ms

3 � Nikita
Lobanov

https://www.youtube.com/watch?
v=93b1epEM3SQ

https://www.youtube.com/watch?v=f0rpdulOSEk
https://www.youtube.com/watch?v=PxxfyVH6RRA
https://www.youtube.com/watch?v=skgSwFle6Ms
https://www.youtube.com/watch?v=93b1epEM3SQ

Using FS-A8S

438

Educational contests

1. Contest for the best educational
lecture
The Copter Express company organizes a contest for the best educational lecture
with COEX Clover 4 quadcopter kit application.

The main goal of the contest is aerial robotics popularization and community
development.

Lecture requirements

The topic of the lecture is of free choice. Programmable quadcopter kit COEX
Clover 4 and/or The Clover simulation environment should be used as the
main tool in the lecture.

*The version of COEX Clover is not earlier than version 4. The virtual
machine image is not earlier than version 1.0.

The video is uploaded on YouTube or another public platform and is public
accessible.
The language of the lecture is any. The video contains subtitles in English in
case the language is made neither of English nor Russian.
The duration of the lecture is limited from 15 min. to 3 hours.

Requirements for the participants

The participant must be the author of the lesson.
Third parties can provide technical support for recording a lecture.
The status of the participant is unlimited (student, representative of a general
education institution, representative of the industry, amateur).

Applications deadline: November 30, 2022.

How to apply?

The application to the contest is performed via the Google Form where the link to
the video lecture should be attached.

Participants who are the authors of the lecture are allowed to participate in the
competition.

Prizes

Based on the results of the submitted application, the jury selects the winners of
the competition. The quality of the video, it is content, and audience engagement
are assessed.

https://clover.coex.tech/en/assemble_4.html
https://github.com/CopterExpress/clover_vm/releases/tag/v1.0
https://docs.google.com/forms/d/e/1FAIpQLScE2kN5dO2OYNSM8hOYzOa5Qvh2uDdd9Fjx8OnL1W93bfEBgw/viewform

Using FS-A8S

439

1st place: $500.
2nd place: $400.
3rd place: $300.
4th place: $200.
5th place: $100.

2. Contest for the best school lesson
The Copter Express company organizes a contest for the best school lesson with
COEX Clover 4 quadcopter kit application.

The main goal of the contest is aerial robotics popularization and community
development.

Lesson requirements

Programmable quadcopter kit COEX Clover 4 should be used as the main
tool for the lesson.

*The version of COEX Clover is not earlier than version 4.

Integration of the quadcopter into any of the general education disciplines
(physics, mathematics, computer science, etc.).
Practical use of the main tool in the lesson.
Grade - no restrictions (primary, high school).
Lesson duration is 30-45 minutes.
Lesson format - offline.
The video of the lesson was filmed in the classroom of a general education
institution.

Requirements for the participants

The participant must be the author of the lesson.
The participant must be a teacher of a general education institution

How to apply?

The application to the contest is performed via the Google Form.

Applications deadline: November 30, 2022.

Prizes

Based on the results of the submitted application, the jury selects the winners of
the competition. The video and material quality are assessed.

1st place: $500.
2nd place: $400.
3rd place: $300.
4th place: $200.
5th place: $100.

https://clover.coex.tech/en/assemble_4.html
https://docs.google.com/forms/d/e/1FAIpQLSdelVy6yQ1iN6u88KeiEIKGj7gGaM0xccSt2tiYKB46ICmjkQ/viewform

Using FS-A8S

440

3. Contest for the best online course
The Copter Express company organizes a contest for the best online course with
COEX Clover 4 quadcopter kit application.

The main goal of the contest is aerial robotics popularization and community
development.

The course is evaluated according to a separate, publicly available lesson
submitted for the contest.

Course requirements

The course is related to the direction of Aerial robotics.
Programmable quadcopter kit COEX Clover 4 and/or The Clover simulation
environment should be used as the main tool in the course;

*The version of COEX Clover is not earlier than version 4. The virtual
machine image is not earlier than version 1.0.

The course is located on a public platform (e.g., Coursera).
The course can be either paid or free of charge. One public lesson from the
course is submitted for the competition;
The lesson submitted for the contest should be publicly accessible.
The language of the lesson is any. The video contains subtitles in English in
case the language is made neither of English nor Russian (if there is a video
in the lesson).
The duration of the course and lesson is not limited.

Requirements for the participants

The participant must be the author of the course.
Third parties can provide technical support for preparing a course.
The status of the participant is unlimited (student, representative of a general
education institution, representative of the industry, amateur).

How to apply?

The application to the contest is performed via the Google Form where the link to
the video course should be attached.

Applications deadline: November 30, 2022.

Prizes

Based on the results of the submitted application, the members of the
Commission select the winners of the competition. The quality of the material, the
format of the presentation of the material, the total volume and content of the
course are assessed.

1st place: $1000.
2nd place: $800.

https://clover.coex.tech/en/assemble_4.html
https://github.com/CopterExpress/clover_vm/releases/tag/v1.0
https://docs.google.com/forms/d/e/1FAIpQLSdf2Q68X4hPnFE9f3EP95AxPNnzHKqIsFHtTRT6EBKiH93wzg/viewform

Using FS-A8S

441

3rd place: $600.
4th place: $400.
5th place: $200.

Using FS-A8S

442

Clover-based projects
Clover drone kit is widely used in design activities. This section contains user
articles describing the implemented projects.

Using FS-A8S

443

Clover Cloud Platform
CopterHack-2023, team Clover Cloud Team.

The list of our team members:

Кирилл Лещинский / Kirill Leshchinskiy, @k_leshchinskiy - Team Lead.
Кузнецов Михаил / Mikhail Kuznetsov, @bruhfloppa - Frontend Developer.
Даниил Валишин / Daniil Valishin, @Astel_1 - Backend Developer.

Table of contents
Introduction
Usability
How to work with our platform?
About the development of the platform
Conclusion

Video demonstration

Introduction
Clover Cloud Platform is an innovative platform that enables users to access
COEX Clover drone simulation online, without the need to download any
programs or virtual machines.

Visit our documentation to learn all about the platform, its development and
how to use it.

https://t.me/k_leshchinskiy
https://t.me/bruhfloppa
https://t.me/Astel_1
https://www.youtube.com/watch?v=FZPl2LOMgi4
https://docs.clovercloud.software/

Using FS-A8S

444

Unleash Your Coding Power: Develop
Autonomous Flight Code at Lightning
Speed on Clover Cloud Platform
If you're a developer working on autonomous flight projects, you know how time-
consuming and distracting all of the routine activities can be. Between managing
your hardware, debugging, and configuring your environment, it can feel like the
real work of coding gets lost in the shuffle.

That's where our platform comes in. Our streamlined interface and powerful tools
make it easy to tackle all of those essential tasks so you can focus on what really
matters: developing flawless, high-performance code for your autonomous flight
project.

So why wait to unleash your coding power? Sign up for our platform today and
discover the difference it can make in the speed, quality, and focus of your
autonomous flight coding work.

Usability
Our platform is incredibly user-friendly and provides seamless access to the
simulation in just a few clicks. Together with a simulator that displays simulation
data accurately and without delay, there is a map editor allows users to edit the
ArUco marker map and add or modify other objects on the scene directly within
the simulation window. Additionally, users can create pre-configured workspaces
complete with autonomous flight code and simulation scene configuration. Each
user can also create their templates or apply a pre-made one to their workspace
in just a few clicks. In addition to its other features, Clover Cloud Platform
provides users with a convenient code editor for autonomous flight coding. Users
can write code in the built-in editor and run it directly from the editor, viewing
program output in real-time in the terminal. The platform also includes a file
manager that simplifies file manipulation tasks, further enhancing the user's
overall experience. With these tools at your fingertips, Clover Cloud Platform
delivers an unparalleled level of accessibility and convenience for autonomous
flight simulation.

Using FS-A8S

445

The CodeSandbox for COEX Clover
You can describe the usability and relevance of our platform in another way. Have
you heard of CodeSandbox? Our platform offers the same convenience, flexibility,
and accessibility as CodeSandbox, but is specifically designed to work with the
COEX Clover drone simulation.

How to work with our platform?
Let's dive into the sea of functionality that our platform offers. Detailed description
of each feature is available in our documentation, here we will provide a general
overview of the platform.

Creating an account

First, you should create an account on our site. You can do this by clicking on this
link.

Instance management

After creating an account, you will be taken to the dashboard. Here you can
create, start, stop and delete workspaces.

Workspaces are containers with Gazebo simulator and our software that
provide data flow for simulation visualization, as well as handle requests
from file manager, code editor and terminal.

Workspace overview

In the workspace, in addition to the simulator, you have a file manager, code
editor and terminal. There is also an editing mode in the simulator - one of the key
features of our project. It allows you to quickly and conveniently edit the
simulation scene, namely: move ArUco markers, change their size, change id of
the marker, load instead of marker picture, add new markers or delete them. You
can also add 3d objects to the scene and change their position, size and color.
Below is an example of working with our workspace.

https://docs.clovercloud.software/
https://clovercloud.software/signup
https://clovercloud.software/instances

Using FS-A8S

446

Templates

Templates are another key feature of our platform.Is there something you can't do
and you want to see how to properly perform a task? Look for the right template
with ready-made code in the Template Browser and apply it to your workspace!
Each user can create a template with an autonomous flight code and simulator
configuration and share it.

About the development of the platform
Our team has worked tirelessly to develop a simple yet multifunctional platform.
We utilized the most modern standards and tools and implemented numerous
optimization methods to ensure seamless performance and error-free operation.
The frontend programming language chosen was JavaScript with the React
framework, as a design system we utilizing Material Design style for an elegant
and intuitive user interface. With the help of GitHub Actions the website is being
built and deployed to Firebase hosting. The platform's backend is written in
Python and contains multiple simultaneously running scripts. User data is secured
and stored in a MongoDB database. Communication between the server and site
is enabled through web sockets and the socket.io library, guaranteeing lightning-
fast data transfer with minimal lag.

You can view the source code of our platform by clicking on the links below:

Repository with the frontend-side code

Repository with the backend-side code

Conclusion
In conclusion, we have successfully created a truly convenient and useful
platform, suitable for both novice and advanced COEX Clover drone users.
Beginners can test their first autonomous flight code without the need for
demanding simulator installation or virtual machines. They can also explore all of
the drone's functions and capabilities without editing any configuration files.
Advanced users benefit from access to their workspace from anywhere in the
world and on any device, along with a convenient code-sharing system. In the

https://github.com/Clover-Cloud-Platform/clover-cloud-platform-frontend
https://github.com/Clover-Cloud-Platform/clover-cloud-platform-backend

Using FS-A8S

447

future, we plan to add more new features to our platform, scale our network to
serve a greater number of users, and collaborate with COEX to integrate their
Clover quadcopter documentation into our platform, offering users a very simple
and user-friendly way to learn to program autonomous drone flight. We also want
to express gratitude to the COEX customer support team for their assistance in
resolving complex issues that arose during development.

Using FS-A8S

448

Autonomous Racing Drone: CHETAK
CopterHack-2023, team DJS PHOENIX.

Team Information

We are the DJS Phoenix, the official drone team of Dwarkadas. J. Sanghvi
College of Engineering

The list of team members:

Shubham Mehta, @Just_me_05, Mentor.
Harshal Warde, @kryptonisinert, Mechanical.
Parth Sawjiyani, @Non_Active, Mechanical.
Soham Dalvi, @devilsfootprint_1973, Mechanical.
Vedant Patel, @VedantMP, Mechanical.
Harsh Shah, @harssshhhhh, Mechanical.
Lisha Mehta, @lishamehta, Mechanical.
Shubh Pokarne, @Shubhpokarne, Electronics.
Tushar Nagda, @tushar_n11, Electronics.
Deep Tank, @Kraven, Electronics.
Khushi Sanghvi, @Cryptoknigghtt, Programmer.
Harshil Shah, @divine_fossil, Programmer.

Using FS-A8S

449

Omkar Parab, @Omkar_parab21, Programmer.
Madhura Korgaonkar, @Madhura221, Programmer.
Shruti Shah, @Shrutishah22, Programmer.
Aditi Dubey, @aditi_0503, Marketing.
Krisha Lakhani, @krishalakhani, Marketing.

Project Description
This year, our team DJS Phoenix, presents to you a fully Autonomous Racing
Drone. The drone scans for ArUco tags on the gates and passes through them.

Project Idea

This project proposes to develop an autonomous racing drone that can navigate
through complex courses at high speeds while avoiding obstacles and detecting
changes in the environment. In racing competitions, autonomous drones can
compete in high-speed, precision races that challenge their agility, speed, and
accuracy. These competitions could be held in indoor arenas or outdoor tracks,
and they could attract enthusiasts and spectators from all over the world. With
their advanced capabilities, autonomous racing drones could usher in a new era
of racing events that are more exciting and challenging than ever before. From
racing competitions to search and rescue operations, the autonomous racing
drone can be used in a wide range of applications that benefit individuals,
businesses, and society as a whole.

Potential Outcome

Problem

In many industries and applications, there is a need for fast, efficient, and safe
movement of goods and information. Drones have become an increasingly
popular tool for a wide range of applications, from aerial photography to surveying
and monitoring. However, operating a drone requires a certain level of skill and
experience, which can be a barrier for individuals or businesses who want to take
advantage of this technology. Additionally, traditional drones can be expensive
and time-consuming to operate, limiting their accessibility and effectiveness.
Therefore, there is a need for a more user-friendly and affordable solution that
can expand the use of drones to new audiences and applications.

Solution

The solution to the above problem statement is an autonomous racing drone. An
autonomous racing drone is equipped with a camera that scans the ArUco tags
for gate detection which is supported by software used in autonomous flights that
enable it to navigate through a predetermined course while avoiding obstacles
and achieving high speeds. Unlike traditional drones, an autonomous racing
drone does not require manual control, making it an ideal solution for those who

Using FS-A8S

450

do not have the skills or experience to operate a drone.Its autonomous
capabilities make it a more accessible and user-friendly solution than traditional
drones, enabling individuals or businesses to take advantage of this technology
without requiring extensive training or expertise.

Additional Information

In 2017, a student committee for DJS Phoenix was formed. In India, our team has
participated in a number of contests, including IDRL-IIT GandhiNagar (sixth rank),
IDRL-SVPCET Nagpur(second rank) and TECHNOXIAN (second place out of 50
national teams). In CopterHack-2021, our team participated, and we placed eighth
internationally. We are back with improved concepts after learning from the
previous season.

For more information checkout gitbook: https://djs-phoenix.gitbook.io/chetak-
faster-than-you-can-imagine/.

https://djs-phoenix.gitbook.io/chetak-faster-than-you-can-imagine/

Using FS-A8S

451

Project Video
CopterHack-2023, team Clover with Motion Capture System. Click logo for
project video.

Table of Contents
Team Information
Educational Document
Introduction
Project Description
Hardware
Data Transfer
Examples
Trajectory Tracking
Auto-Tuning
Conclusion

Team Information
The list of team members:

Sean Smith, @ssmith_81, roboticist and developer: GitHub, Linkedin.

Educational Document

https://www.youtube.com/watch?v=jOovjo0aBpQ&t=4s&ab_channel=SeanSmith
https://github.com/ssmith-81
https://www.linkedin.com/in/sean-smith-61920915a/

Using FS-A8S

452

My Gitbook, with detailed step by step analysis of the proposed project
during the CopterHack 2023 competition can be found: MoCap Clover
Gitbook.

This page gives a broad overview on the motivation and purpose behind this
project, it also provides research and industry based knowledge around UAV
application that the reader may find interesting. If the user is interested in the
technical details and implementation then refer to the educational Gitbook
document.

Introduction
Aerial robotics has become a common focus in research and industry over the
past few decades. Many technical developments in research require a controlled
test environment to isolate certain characteristics of the system for analysis. This
typically takes place indoors to eliminate unwanted disturbances allowing results
to be more predictable. Removing localization and pose feedback concerns can
be accomplished with motion capture (MoCap) systems that track unmanned
aerial vehicles (UAVs) pose with high precision as stated:

"OptiTrack’s drone and ground robot tracking systems consistently produce
positional error less than 0.3mm and rotational error less than 0.05°" [reference].

This enables researchers to study the dynamics and behavior of UAVs in different
environments, evaluate their performance, and develop advanced control
algorithms for improved flight stability, autonomy, and safety. Research facilities
around the world tend to built research drones from the ground up using off-the-
shelf components with open source platforms such as PX4. While the end goal is
the same: transferring pose feedback to the flight controller along with high level
commands, the platforms and methods can vary significantly depending on
factors such as onboard and offboard computing frameworks and data transfer
methods. Many developers have a detailed background and understanding of the
theoretical components of their research, however, adapting hardware
configurations to their own platform such as sensor feedback and sensor fusion is
not obvious. The purpose of this project is to provide detailed documentation on
integrating the Clover platform with the MoCap system along with examples to
familiarize users with the hardware, sensor fusion, high and low level controller
development, and trajectory tracking.

Project Description
In this article, we will provide an overview of MoCap systems for tracking UAV
pose in research applications, highlighting their significance, advantages, and
potential impacts in the field of UAV controller development.

Document structure

https://0406hockey.gitbook.io/mocap-clover/
https://optitrack.com/applications/robotics/#:~:text=Exceptional%203D%20precision%20and%20accuracy&text=OptiTrack's%20drone%20and%20ground%20robot,error%20less%20than%200.05%C2%B0

Using FS-A8S

453

The Motion Capture System educational document is divided into three main
sections outside of the Introduction and Conclusion. Each section and its purpose
is listed:

Hardware

The main goal in this section is to educate the reader on the MoCap system
hardware and software. This can be further divided into several steps including
camera placement, marker placement, and system calibration. A summary of the
process is provided:

Task Description

Camera
Placement

Position the motion capture cameras in strategic locations
around the area where the UAV will be flying. The number of
cameras and their placement will depend on the size of the
area and the desired capture volume. Typically, cameras are
placed on tripods or mounted on walls or ceilings at specific
heights and angles to capture the UAV's movements from
different perspectives. A simple 4-camera setup example
is provided in the educational document.

Marker
Placement

Attach OptiTrack markers to the UAV in specific locations.
OptiTrack markers are small reflective spheres that are used
as reference points for the motion capture system to track
the UAV's position and movements. An example
placement on the Clover is shown in the educational
document.

System
Calibration

Perform system calibration to establish the spatial
relationship between the cameras and the markers. This
involves capturing a calibration sequence, during which a
known pattern or object is moved in the capture volume. The
system uses this data to calculate the precise positions and
orientations of the cameras and markers in 3D space, which
is crucial for accurate motion capture.

With these components completed correctly, you are well on your way to
commanding indoor autonomous missions like this:

Using FS-A8S

454

Overall, configuring a motion capture system for UAV research requires careful
planning, precise marker placement, accurate system calibration, and thorough
validation to ensure accurate and reliable data collection for your research
purposes. For more information, refer to the informative documentation.

Data Transfer

With the data acquired from the MoCap system, the main goal in this section is to
transfer it to the Raspberry Pi onboard the Clover and remap it to the flight
controller/PX4 for control. A summary of the steps are listed:

Data Acquisition: The motion capture system continuously tracks the position
and orientation (pose) of the UAV using markers attached to the UAV and
cameras positioned in the capture volume. The system calculates the 3D
pose of the UAV in real-time and can be viewed through the motive software.
Data Transmission: The pose data is transmitted from the motion capture
system to a Raspberry Pi using VRPN and a ROS network. While this works,
I have implemented a strictly UDP data transmission method where
highlighting the setup process and ease of use will be a future development,
both configurations can be seen in the below figures. The Raspberry Pi acts
as an intermediary for processing and relaying the data to the flight controller
onboard the UAV using MAVROS. The connection can be established using
USB or UART, I chose UART in my setups.

Fig.1(a) - Left figure: ROS network experimental setup topology. Legend:

Black dotted line is the provided local network; Blue solid line is the Clover
pose transmission where the final transmission from laptop to Pi is over a

ROS network; Red line is hardware connections; MAVLink arrow is

https://0406hockey.gitbook.io/mocap-clover/hardware/motion-capture-setup-optitrack

Using FS-A8S

455

communication via a MAVLink protocol. .
Fig.1(b) - Right figure: UDP transmission experimental setup topology.

Legend: Black dotted line is the provided local network; Black solid line is the
UDP client-server drone pose transmission; Light blue line is the pose data

transmission; Red line is hardware connections; Purple line is communication
via secure shell protocol and ROS network communication; MAVLink arrow is

communication via a MAVLink protocol. .

Data Processing: The Raspberry Pi receives the pose data from the motion
capture system over a ROS network on a VRPN ROS topic, this was initially
parsed from the sensor readings into position and attitude.

Data Remapping: Once the pose data is processed, the Raspberry Pi maps it
to the to a gateway/MAVROS topic sending it to the flight controller onboard
the UAV. All coordinate transformations (ENU->NED) are taken care of with
MAVROS.
Flight Control Update: The flight controller onboard the UAV receives the
remapped pose data and uses it to update the UAV's flight control algorithms.
The updated pose information can be used to adjust the UAV's flight
trajectory, orientation, or other control parameters to achieve the desired
flight behavior or control objectives based on the motion capture system
feedback.
Closed-Loop Control: The flight controller continuously receives pose
feedback from the motion capture system via the Raspberry Pi, and uses it to
update the UAV's flight control commands in a closed-loop fashion (PX4 uses
a cascaded PID control system with more details provided in the educational
document). This allows the UAV to maintain precise position and orientation
control based on the real-time pose data provided by the motion capture
system.

Overall, sending pose feedback from a motion capture system to a Raspberry Pi
and remapping the data to the flight controller onboard a UAV involves acquiring,
processing, and transmitting the pose data in a compatible format to enable real-
time closed-loop control of the UAV based on the motion capture system's
feedback.

Examples

This section provides two practical examples to help the user better understand
the Clover platform, sensor fusion, UAV applications such as trajectory tracking,
high level commands, and low level control. The reader will become familiar with
an abundance of state-of-the-art open source UAV platforms/technologies such
as:

Using FS-A8S

456

Platform Description

PX4

PX4 is an open-source flight control software for
drones and other unmanned vehicles used on the
Clover. It supports a wide range of platforms and
sensors and is used in commercial and research
applications.

Robot Operating
System (ROS)

ROS is an open-source software framework for
building robotic systems. It provides a set of libraries
and tools for developing and managing robot software
and is widely used in drone and robotics research.

MAVLink

MAVLink is a lightweight messaging protocol for
communicating with unmanned systems. It is widely
used in drone and robotics applications and provides a
flexible and extensible communication framework.

QGroundControl
(QGC)

QGC is an open-source ground control station
software for drones and other unmanned vehicles. It
provides a user-friendly interface for managing and
monitoring drone flights and is widely used in
commercial and research applications.

1. A figure-8 high-level trajectory generation: this example is outlined for
both Software in the Loop (SITL) simulations and hardware testing with the
Clover platform. Check out this interesting example from my trajectory
tracking section!

Fig.2 - Lemniscate of Bernoulli [reference].

Here's a summary of the importance of trajectory tracking for UAV applications:

https://0406hockey.gitbook.io/mocap-clover/examples/flight-tests/complex-trajectory-tracking
https://upload.wikimedia.org/wikipedia/commons/f/f1/Lemniscate_of_Bernoulli.gif

Using FS-A8S

457

Navigation and Path Planning: Trajectory tracking allows UAVs to follow pre-
defined paths or trajectories, which is essential for tasks such as aerial
mapping, surveying, inspection, and monitoring.
Precision and Safety: Trajectory tracking enables precise control of the UAV's
position, velocity, and orientation, which is crucial for maintaining safe and
stable flight operations. Precise trajectory tracking allows UAVs to avoid
obstacles, maintain safe distances from other objects or aircraft, and operate
in confined or complex environments with high precision, reducing the risk of
collisions or accidents.
Autonomy and Scalability: Trajectory tracking enables UAV autonomy,
allowing them to operate independently without constant operator
intervention. This enables UAVs to perform repetitive or complex tasks
autonomously, freeing up human operators to focus on higher-level decision-
making or supervisory roles. Trajectory tracking also facilitates scalable
operations, where multiple UAVs can follow coordinated trajectories to
perform collaborative tasks, such as swarm operations or coordinated data
collection.
Flexibility and Adaptability: Trajectory tracking allows UAVs to adapt their
flight paths or trajectories in real-time based on changing conditions or
objectives. UAVs can dynamically adjust their trajectories to accommodate
changes in environmental conditions, mission requirements, or operational
constraints, allowing for flexible and adaptive operations in dynamic or
unpredictable environments.

In summary, trajectory tracking is crucial for UAV applications as it enables
precise navigation, safety, efficiency, autonomy, and scalability, while optimizing
payload performance and adaptability to changing conditions. It plays a
fundamental role in ensuring that UAVs can accomplish their missions effectively
and safely, making it a critical component of UAV operations in various industries
and domains.

1. Clover adaptive auto-tuning: The second example shows the user how to
implement the adaptive auto-tune module provided by PX4 to tune the low-
level controllers or attitude control module. You can take a look into how this
is accomplished with the Clover platform in the auto-tuning section.

https://0406hockey.gitbook.io/mocap-clover/examples/auto-tuning

Using FS-A8S

458

Fig.3 - Cascaded PX4 control system [reference].

This is a much faster and easier way to tune a real drone and provides good
tuning for most air frames. Manual tuning is recommended when auto-tuning dos
not work, or when fine-tuning is essential. However, the process is tedious and
not easy especially for users with limited control background and experience. The
Clover airframe provides sufficient base settings where auto-tuning can further
improve performance depending on the Clover being used.

Here's a summary of the importance of low-level controller performance for UAV
applications:

Flight Stability and Safety: The low-level controller, typically implemented as
a PID (Proportional-Integral-Derivative) or similar control algorithm, governs
the UAV's attitude and position control. Properly tuning the low-level
controller ensures that the UAV remains stable during flight, with accurate
and responsive control inputs. This is essential for safe and reliable UAV
operations, as it helps prevent undesired oscillations, overshooting, or
instability that can lead to crashes or accidents.
Control Precision and Responsiveness: Accurate control is crucial for
achieving precise and responsive UAV maneuvers, such as smooth trajectory
tracking, precise hovering, or dynamic maneuvers. Proper tuning of the low-
level controller allows for precise control of the UAV's attitude, position, and
velocity, enabling it to accurately follow desired flight trajectories, respond to
changing conditions or commands, and perform complex flight maneuvers
with high precision.

https://docs.px4.io/v1.12/en/flight_stack/controller_diagrams.html#multicopter-control-architecture

Using FS-A8S

459

Adaptability and Robustness: UAV operations can be subject to varying
environmental conditions, payload configurations, or operational
requirements. Proper low-level controller tuning allows for adaptability and
robustness, enabling the UAV to perform reliably and accurately across a
wide range of conditions or mission requirements. Tuning the controller
parameters can help account for changes in payload mass, wind conditions,
or other external factors, ensuring stable and responsive flight performance.

In summary, low-level controller tuning is crucial for UAV applications as it directly
affects flight stability, control precision, payload performance, energy efficiency,
adaptability, and compliance with safety and regulatory requirements. It is an
essential step in optimizing the performance and safety of UAV operations,
ensuring reliable and effective flight control for various applications across
different industries and domains.

Conclusion
Over the course of this project I was able to extend my knowledge in robotic
applications while enduring many ups and downs along the way. This greatly
helped me with my research when testing controller development was required.
The motivation behind this documentation is to improve this experience for other
researchers, robotic developers, or hobbyists that have a desire to learn
fundamental robotic application which is beginning to shape the world we know
today. These details can be explored in a GitBook for those who are interested.

I provided many details on the interworking components required to achieve an
indoor autonomous flight setup with the COEX Clover platform. With an extensive
background in UAV control, I tried to provide a basic understanding of this for the
readers benefit. There are many more sections I would like to include along with
improving upon the existing ones. A few examples include firmware testing with
hardware in the loop simulations, advanced trajectory generation, and an
extensive list of flight examples for the Gazebo simulator with application to
hardware.

https://0406hockey.gitbook.io/mocap-clover/

Using FS-A8S

460

Lastly, I would like to thank the entire COEX team that made this project possible
by providing a wonderful platform with support. I would like to give a special
thanks to Oleg Kalachev for helping me debug and succeed through applied
learning. With that being said, I hope you all enjoy the resourceful content
provided, and I plan on releasing more detailed documents on other interesting
topics as I progress through my research and development.

https://github.com/okalachev

Using FS-A8S

461

Swarm in Blocks
CopterHack-2023, team Atena.

Project Status

Final Video

https://swarm-in-blocks.gitbook.io/swarm-in-blocks/introduction/swarm-in-blocks

Using FS-A8S

462

Table of contents
Introduction
Getting started
Usage modes
New Swarm Features
Conclusion

Introduction
Nowadays, swarms of drones are getting more and more applications and being
used in several different areas, from agriculture to surveillance and rescues. But
controlling a high amount of drones isn't a simple task, demanding a lot of studies
and complex software.

Swarm in Blocks (from it's origin in 2022) was born looking to make a high-level
interface based on the blocks language, to make simple handling swarms, without
requiring advanced knowledge in all the necessary platforms, creating tools to
allow a lot of applications based on the user needs and also using the Clover
platform.

In 2023, Swarm in Blocks has taken an even bigger step, looking to fulfill our
biggest vision "It's never been easier to Swarm", we talk to transcend the local
scope of the past project and explore the biggest problems for implementing a
Swarm. For Copterhack 2023, we present Swarm in Blocks 2.0, an even more
complete platform with the purpose of facing the biggest difficulties of a Swarm in
a simple and polished way.

https://www.youtube.com/watch?v=QFKgrqIAO1E&ab_channel=SwarminBlocks

Using FS-A8S

463

Swarm in Blocks 2022

Swarm in Blocks is a CopterHack 2022 project. It's a high-level interface based on
the blocks language, which consists of fitting code parts, like a puzzle. Each script
represents a functionality, for example, conditional structures, loops, or functions
that receive parameters and return an instruction to the swarm.

Using FS-A8S

464

For more information on our project from last year, see our final article in Swarm
in Blocks 2022. In addition, we also recommend watching our final video from last
year, Swarm in Blocks 2022 - Final Video.

Even with the huge facilities that the block platform offers, we realized that this
was just the tip of the iceberg when it comes to deploying real swarms. Several
other operational and conceptual problems in validating a real swarm still haunted
the general public. With that, this year's project comes precisely with the purpose
of tackling the main problems in validating a Swarm in a simple and
polished way.

What's new

As already mentioned, of the various problems that can increase the complexity of
a real swarm, we decided to deal with the ones that most afflicted us and
reintegrated our solutions into our central platform, building a single extremely
complete and cohesive platform.

Problem Our Solution

Possible collision between drones (lack of
safety especially for large Swarms)

Collision Avoidance
System

Giant clutter to keep track of all Clovers in a
swarm individually (several terminals, many
simultaneous computers with several people
to keep track of)

Swarm Station

Lack of basic features for handling a swarm
pre-implemented in the Clover platform (such
as access to battery data and raspberry
computational power)

Full integration of low
level data in our Swarm
Station

Lack of security in indoor tests regarding the
limitation of physical space (walls and objects)
in the Swarm region

Safe Area Pop Up in
Swarm Station

Decentralization of information and platforms
for access Web Homepage

Difficulty configuring physical drones for
swarm

Our complete
documentation with pre-
designed settings for
swarms in our repo
image

Lack of a center for reports of successful tests
with swarms of drones for the Clover platform
describing the test conditions (odometry, etc.)

Show off section in our
Gitbook

And many other solutions are also featured on our platform, for more information
please check the solutions described clearly and in detail throughout our Gitbook.
We recommend reading in order to understand the fundamental precepts of our
platform.

Ä Access our Gitbook!

© Access our GitHub!

https://clover.coex.tech/en/swarm_in_blocks.html
https://www.youtube.com/watch?v=5C-1rRnyiE8
https://swarm-in-blocks.gitbook.io/swarm-in-blocks/background-theory/systems
https://github.com/Grupo-SEMEAR-USP/swarm_in_blocks.git

Using FS-A8S

465

[↑ to top ↑]

Getting started
Our platform was made to be extremely intuitive and easy to use. To start (after
completing the installation we suggested in our gitbook), you can run the
command:

roslaunch swarm_in_blocks simulation.launch num:=2

After that, you can open your browser and access our homepage by typing
 localhost in the search bar.

[↑ to top ↑]

Usage modes
The Swarm in Blocks can be programmed either with the blocks interface or
directly in Python and we developed three main launch modes, each one focused
on a different application of the project, they are:

Planning Mode: Its main goal is to allow the user to check the drones' layout,
save and load formations, before starting the simulator or using real clovers.
In order to need less computational power and avoid possible errors during
the simulation.
Simulation Mode: In this mode happens the simulation indeed, starting the
Gazebo, the necessary ROS nodes and some other tools. It allows applying
the developed features, which will be explained ahead and see how they
would behave in real life.
Navigation Mode: The last mode will support executing everything developed
in real clovers so that it's possible to control a swarm with block
programming. The biggest obstacle yet is the practical testing of this mode,
due to the financial difficulty of acquiring a Clover swarm.

[↑ to top ↑]

New Swarm Features
With our vision of solving the problems that most plague the deployment of a real
swarm, we have developed several features (and even integrated platforms),
below we will list our main developments:

Homepage

Using FS-A8S

466

Like last year, we really wanted to make it easier for the user to go through our
platform. That's why this year we decided to restructure our Homepage, gathering
our main features and functionalities.

Swarm Station

The main feature from our platform is the Swarm Station, which is a 3d Web
Visualizer that shows in real time all the necessary information regarding the
drones state, such as real time positioning and visualization, which clover is
connected, the topics available and a lot more. Also, you can define a safe area to
ensure each drones safety, forcing them to land in case they cross the forbidden
area. The front end runs completely on the web browser, saving processing and
installation resources. It also comes with a web terminal, allowing the user to
open several instances of a terminal emulation in just one click.

This package uses the ROS suite rosbridge_server to establish a
communication between the ROS environment and the web server.

To run it, we recommend using Firefox browser to assure stability. But feel free to
test it on other navigators.

If you launched our simulation.launch from the swarm_in_blocks package, then
you just have to run

Using FS-A8S

467

roslaunch swarm_station swarm_station.launch

Otherwise, you have to make sure that the rosbridge_websocket is running on
port 9090 :

roslaunch rosbridge_server rosbridge_websocket.launch port:=9090

For more detailed instructions on how to use each single feature from the Swarm
Station, check our Gitbook page about the station.

Swarm Collision Avoidance

When many drones move close to each other, collisions are very likely to occur.
To avoid this problem, an algorithm was developed to avoid collisions between
drones. When analyzing a collision, 3 types of scenario are possible, the case
where one clover is stationary and the other in motion, the case where both are in
motion and with parallel trajectories, and finally the case where both are in motion
and with non-parallel trajectory.

To turn on the collision avoidance, it is necessary to run:

rosrun swarm_collision_avoidance swarm_collision_avoidance_node.py

Rasp Package

The Raspberry package was developed to instantiate a node that will be
responsible for collecting essential processing, memory and temperature
information from the raspberry and send it to the Swarm Station. It's the package
that should be put on the catkin_ws/src/ directory of each Raspberry Pi,
because it also contains the realClover.launch needed to launch the swarm on
real life.

Swarm FPV

https://swarm-in-blocks.gitbook.io/swarm-in-blocks/

Using FS-A8S

468

This package is a reformulation of one of the CopterHack 2022 implementations,
the Swarm First Person Viewer. This year, we decided to restart its structure,
making it run also completely on the web to integrate with the Swarm Station. It
also depends on the rosbridge_websocket running on the port 9090 (default).

Real Swarm

In order to fly a real swarm using clover, we decided to take an approach of
putting every clover on the same ROS network / environment so that the master
could talk to each one of them.

We did this by separating each drone topics / nodes / services with namespaces.
The goal is to achieve the same effect as the simulation that we've done in
CopterHack-2022, so each drone would have its own /cloverID namespace,
and the ID is the identifier for each drone.

In other words, instead of just simple_offboard node for a single drone, we'd now
have /clover0/simple_offboard , /clover1/simple_offboard and so on.

To launch it, you need to first stop clover's default daemon, and then connect all
Raspberries to the same network. After that, you should connect all their roscore
to the same IP address (the master's), and then launch the realClover.launch
file passing the ID argument as a parameter. Again, for more detailed
information on how this works, please check out our gitbook:

sudo systemctl stop clover
roslaunch rasp_pkg realClover.launch ID:=0

https://swarm-in-blocks.gitbook.io/swarm-in-blocks/

Using FS-A8S

469

We are aware that in the video the calibration of the drone control is not
ideal, however, the objective of this test was really to validate the operation
of the swarm in a real environment (which was actually done).

[↑ to top ↑]

Conclusion
Engineering and robotics challenges have always been the main driver of Team
Athena, from which we seek to impact society through innovation. Last year,
during CopterHack 2022, there was no lack of challenges of this type, and in them
we grew and exceeded our limits, all to deliver the best possible project: Swarm
in Blocks. All the motivation to facilitate a task as complex as the manipulation of
swarms of drones, even through block programming, delighted us a lot and we
hope that it delights all our users.

With that came the Swarm in Blocks 2.0, which brought with it innovations that
optimized the clover's flight control and that could allow for greater emotions in
the handling of the drone, in addition to focusing on greater flight safety. The
Swarm in Blocks 2.0 presents new features for this year, such as the Web
terminal, First Person View (FPV), Collision Avoidance, Clover UI and Swarm
Station. However, the work will not stop there. Our goal is to further improve our
system and next steps include validating Collision Avoidance outside the
simulated world and performing performance tests with network communication
solutions to optimize Real Swarm.

Finally, we thank the entire COEX team that made CopterHack 2023 possible and
all the support given during the competition. We are Team Atena, creator of the
Swarm in Blocks platform and we appreciate all your attention!

[↑ to top ↑]

Using FS-A8S

470

The Atena Team
Atena Team 2023 (Swarm in Blocks 2.0):

Agnes Bressan de Almeida : GitHub, LinkedIn
Felipe Tommaselli: GitHub, LinkedIn
Gabriel Ribeiro Rodrigues Dessotti : GitHub, LinkedIn
José Carlos Andrade do Nascimento: GitHub, LinkedIn
Lucas Sales Duarte : GitHub, LinkedIn
Matheus Della Rocca Martins : GitHub, LinkedIn
Nathan Fernandes Vilas Boas : GitHub, LinkedIn

In honor of Atena Team 2022:

Guilherme Soares Silvestre : GitHub, LinkedIn
Eduardo Morelli Fares: GitHub, LinkedIn
Felipe Tommaselli: GitHub, LinkedIn
João Aires C. F. Marsicano: GitHub, LinkedIn
José Carlos Andrade do Nascimento: GitHub, LinkedIn
Rafael Saud C. Ferro: GitHub, LinkedIn

[↑ to top ↑]

https://github.com/AgnesBressan
https://www.linkedin.com/in/agnes-bressan-148615262/
https://github.com/Felipe-Tommaselli
https://www.linkedin.com/in/felipe-tommaselli-385a9b1a4/
https://github.com/dessotti1
https://www.linkedin.com/in/gabriel-ribeiro-rodrigues-dessotti-8884a3216
https://github.com/joseCarlosAndrade
https://www.linkedin.com/in/jos%C3%A9-carlos-andrade-do-nascimento-71186421a
https://github.com/LucasDuarte026
https://www.linkedin.com/in/lucas-sales-duarte-a963071a1
https://github.com/MatheusDrm
https://www.linkedin.com/in/matheus-martins-9aba09212/
https://github.com/uspnathan
https://www.linkedin.com/mwlite/in/nathan-fernandes-vilas-boas-047616262
https://github.com/guisoares9
https://www.linkedin.com/in/guilherme-soares-silvestre-76570118b/
https://github.com/faresedu
https://www.linkedin.com/in/eduardo-fares-a271561a0/
https://github.com/Felipe-Tommaselli
https://www.linkedin.com/in/felipe-tommaselli-385a9b1a4/
https://github.com/Playergeek181
https://www.linkedin.com/in/joao-aires-correa-fernandes-marciano-53b426195/
https://github.com/joseCarlosAndrade
https://www.linkedin.com/in/jos%C3%A9-carlos-andrade-do-nascimento-71186421a
https://github.com/Rafael-Saud
https://www.linkedin.com/in/rafael-saud/

Using FS-A8S

471

Advanced Clover 3: The Platform
CopterHack-2023, team FTL.

Team Information

#include "veryInterestingCommandDescription.h"

Team members:

Maxim Ramanouski, @max8rr8.

Country: Belarus.

Project Description
Last year at CopterHack 2022, we created a project that simplified the simulation
of Clover, and in 2021, we created a project that simplified the development of
products for Clover (IDE and library for writing). The time has come to combine
them and achieve unlimited power.

Project Idea

The idea of the project is to combine CloverIDE and CloverSim (a tool for running
Clover simulations). Thus, a platform is planned that allows developing products
based on Clover using a simulator and an advanced IDE. The platform will include
the following features:

Add a web interface that allows using CloverSim without touching the
command line.
Work both in the browser (without installing anything) and from CLI.
Have a course that covers different aspects of clover.
Simplify installation, especially in WSL.
Running a simulation on a remote device (more powerful computer or cloud).

Project videos

Video presentation of the project: link.

Live presentation at CopterHack: TBD.

CLI demonstration: link.

Installation
Installation process is described in the project documentation.

https://t.me/max8rr8
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/advanced_clover_simulator.html
file:///tmp/calibre_5.37.0_tmp_gdtxb368/mab5pgnj_pdf_out/advanced_clover.html
https://www.youtube.com/watch?v=T4RU9sfxsSI
https://www.youtube.com/watch?v=Ao-ukR58sSQ
https://ftl-team.github.io/clover_sim/#/?id=installation

Using FS-A8S

472

Usage
The CloverSim platform offers a seamless workflow for users:

1. Users can effortlessly select or create a workspace and task and launch them
with ease.

2. After launching the simulation, users are presented with CloverSim WebUI
that provides them with an intuitive way to view their scores and progress,
control the simulator, and access task descriptions and scoring information.
From it users can open terminal, gzweb and more importantly they can easily
access the CloverSim IDE to solve task.

3. The IDE provides a full suite of tools and features for writing and debugging
code. One example is autocompletion to help streamline the development
process, making it more efficient and effective.

Using FS-A8S

473

4. Users can launch their programs with ease and monitor its progress via the
GZWeb, CopterStatus, and SimulatorStatus views of the IDE.

5. Users can track their progress and scores in real-time and effortlessly restart
the simulator if necessary. Additionally, different randomization seed can be
set to check various inputs and outcomes.

We also have video demonstration/tutorial: link.

More features
Easy installation process.
Efficient simulation launch, surpassing traditional virtual machines.
Generation of dynamic Gazebo worlds with randomization based on seed.
Real-time task completion verification and score presentation.
Execution with security in isolated containers.
Multiple project capability without the need for multiple virtual machine
images.
WebUI for ease of use, removing the need to use the command line.
IDE similar to VSCode with support for C++ and Python, including
autocompletion and autoformatting.

https://www.youtube.com/watch?v=aPOPHD3M3ZM

Using FS-A8S

474

Custom-patched GZWeb with bug fixes and additional features, including the
display of the Clover LED strip.
GZWeb provides a follow-objects feature superior to that of Gazebo.
IDE includes tools to interact with ROS, such as topic visualization, service
calling, and image topic visualization.
IDE also includes Copter Status, displaying most of the drone's information,
including position, camera, and LED strip, in one view.
IDE integrates with the simulator by providing control from it, viewing task
descriptions, and opening GZWeb.

We also have developed a learning course based on CloverSim: link. It currently
has the following tasks:

1_thesquare - First task of CloverSim course with goal to fly square.
2_iseeall - Task that teaches how to interact with camera.
3_landmid - Find and land onto randomly positioned object.
4_flybyline - Flying along the line.
5_posknown - Find position of objects relative to ArUco map.

More details
At this point, our platform consists of four major parts:

CloverSim - tool that manages simulation.
CloverSim Basefs - container image that is used in simulator.
Clover IDE - clover ide tools and theia.
CloverSim course - course with tasks based on our platform.

CloverSim

The simulation architecture is a continuation of work from CopterHack 2022, but
while 2022 version was closer to Proof-of-Concept, the updated version is more
robust.

There are three major difference in simulator architecture

Replacement of systemd-nspawn with runc provides us higher degree of
container control and seemingless support of non-systemd systems, for
example WSL.
Migration to squash fs images, which greatly reduced size of installed
CloverSim from 13 gigabytes to just 3.5 gigabytes.
Tasks are now mounted instead of being copied and also build before
starting.

Because of the way catkin_make works, it is incredibly slow when new packages
are added (whole cmake configuration is rerun for all packages). catkin_make
provides a way to build only some packages, but it caches this packages and to
reset this cache you need to recompile whole catkin_make. But we have found a
solution: catkin_make -DCATKIN_WHITELIST_PACKAGES="task;CloverSim" --build

https://github.com/FTL-team/CloverSim_course
https://github.com/FTL-team/clover_sim
https://github.com/FTL-team/clover_sim_basefs
https://github.com/FTL-team/cloverIDE
https://github.com/FTL-team/CloverSim_course

Using FS-A8S

475

build_CloverSim This command, builds only CloverSim and task package in
separate build directory, this drastically reduces time that catkin_make takes, and
keeps expected behavior of catkin_make without arguments.

There are also differences in tool that launches simulation:

Client-server architecture allows us to create web UI and run CloverSim on
server.
More robust error handling improves user experience.
Rewritten in rust, better reliability and development experience.

CloverSim basefs

Version 2 integrates CloverIDE into system. We also updated clover in simulator
to v0.23 and added web terminal. Basefs is now squashed and doesn't require
additional installation. It also uses patched(by us) version of gzweb that is more
suitable for our use-case:

Unlike original GZWeb assets can be dynamically loaded, which is required
to support dynamically generated tasks.
It also implements multiple bugfixes for rendering, UI.
Fixed performance, original gzweb had two constantly running loops that
used 200% of cpu. We fixed this by instead using synchronization primitives.
Clover LED strip is rendered, our gzweb connects to ROS and pulls LED data
from there to render LED strip like Gazebo does.
Users can now follow-objects like in Gazebo better actually.
Reconnect on disconnect, when simulator is restarted gzweb looses
connection and it now can automatically reconnect.

Patched gzweb available there: FTL-team/gzweb.

CloverIDE

CloverIDE got some updates too:

We have updated theia and extensions used.
Better C++ support via clangd.
Clover IDE tools can now reconnect after simulator restart.
Copter Status now displays LED strip status.
Tools ui has better support for different themes.

But the most important change is CloverSim integration, there are new tools (task
description, simulator control and gzweb). While gzweb tool is just an iframe
(though it's very cool to have it in IDE).

Task description and simulator control are more interesting as they have to
interact with both IDE and CloverSim, to maintain different versions support we
use quite interesting trick, extension webview after being initialized dynamically
loads JavaScript from CloverSim. That provides better integration between two.

CloverSim course

https://github.com/FTL-team/gzweb

Using FS-A8S

476

CloverSim course is a new part of our platform. It uses robust task API of
CloverSim to create practical learning course. It currently teaches different
aspects of clover development that i encountered during my participation in
different contests involving clover. But we are happy to accpet suggestions about
other aspects we should teach in out course.

Conclusion
This project is a final (or maybe there is more?) project of our advanced clover
saga. AdvancedClover is a project that is easy to use and greatly improves
experience during learning about clover, participating in clover based competitions
and development clover based projects. We thank COEX team for their support
and look forward to further cooperation.

Using FS-A8S

477

"QCS" - the network of Clover
charging stations
CopterHack-2023, team Lyceum 128.

Network realisation
Our charging stations use Python web server created with Django framework. On
that server we storage information about charging stations:

Position (GPS + ArUco marker).
Possibility to drone landing.
Drone info (If it's on it).

To connect to server we use API with special personal key for every drone and
station. It can be regenerated if secured key became public.

If you want to test station without drone you can use API Debug page. You must
be in your account to open it.

Electronics in the station

There are Arduino Mega and Wemos D1 on the station.

Wemos D1 connect with server to collect information, do tasks. Arduino Mega
receive signals from Wemos and make physical updates such as moving landing
platform, LED indication and other more.

After completing mission Wemos send request to a server to confirm updates on
the server.

Clover flight

Using FS-A8S

478

We're using recursive landing algorithm to achieve success landing. Small ArUco
marker is on the landing platform. Camera can use this marker on the ~25cm
height. Next drone use standard landing.

Visit our landing and API page
https://qcs.pythonanywhere.com/

Source code
Of that project is in our GitHub page.

Team
CH2023, Lyceum 128.

Mikhail Konstantinov, @mikemka, programmer.
Julia Shvecova, @Juli_Phil, science adviser.
Oleg Sherstobitov, @kulumuluu, constructor.

https://qcs.pythonanywhere.com/
https://github.com/qcs-charge/
https://t.me/mikemka/
https://t.me/Juli_Phil/
https://t.me/kulumuluu/

Using FS-A8S

479

Swarm-in-blocks

Final Video

Detailed Gitbook
Check our Gitbook, with the detailed information about all that was
developed by Atena Team during CopterHack 2022: https://swarm-in-
blocks.gitbook.io/swarm-in-blocks/introduction/swarm-in-blocks.

The Clover Platform was forked and adapted to work with swarms. The
Swarm in Blocks project is a separated repository with all our swarm
manipulation tools for clover. Link of the fork of the Clover Platform:
https://github.com/Grupo-SEMEAR-USP/clover . Link of the Swarm in
Blocks repository: https://github.com/Grupo-SEMEAR-
USP/swarm_in_blocks .

Introduction
Nowadays, swarms of drones are getting more and more applications and being
used in several different areas, from agriculture to surveillance, and rescues, but
controlling a high amount of drones usually isn't a simple task, demanding a lot of
studies and complex software. Swarm in Blocks was born looking to make a high-
level interface based on the blocks language, to make simple handling swarms,
without requiring advanced knowledge in all the necessary platforms, creating
tools to allow a lot of applications based on the user needs and also using the
Clover platform, which has a lot of advantages as being complete and intuitive,
supporting all the project goals.

https://www.youtube.com/watch?v=5C-1rRnyiE8
https://swarm-in-blocks.gitbook.io/swarm-in-blocks/introduction/swarm-in-blocks
https://github.com/Grupo-SEMEAR-USP/clover
https://github.com/Grupo-SEMEAR-USP/swarm_in_blocks

Using FS-A8S

480

Usability

How it works

The Swarm in Blocks can be programmed either with the blocks interface or
directly in Python and we developed three main launch modes, each one focused
on a different application of the project, they are:

Planning Mode: Its main goal is to allow the user to check the drones'
layout, save and load formations, before starting the simulator or using real
clovers. In order to need less computational power and avoid possible errors
during the simulation.
Simulation Mode: In this mode happens the simulation indeed, starting the
Gazebo, the necessary ROS nodes and some other tools. It allows applying
the developed features, which will be explained ahead and see how they
would behave in real life.
Navigation Mode: The last mode will support executing everything
developed in real clovers so that it's possible to control a swarm with block
programming. The biggest obstacle yet is the practical testing of this mode,
due to the financial difficulty to afford a Clover swarm.

Blocks Interface

The entire Swarm in Blocks project was designed so that the user was in an
intuitive and comfortable environment within the manipulation of swarms, for this,
the existing platform with clover packages was completely rethought and adapted.
In our gitbook, we have more details about the front-end design, how the user can
interact with it, and achieve our main goal: programming in blocks.

https://app.gitbook.com/s/C9O11TiXK1JPnlrpilLg/usability/blocks-api

Using FS-A8S

481

Features

Along with the project, we developed some features, that can be used together or
independently and also serve as base for the implementation of more specific and
advanced innovations. Here are the list and a brief explanation of each tool, to
see more details and instructions about their use, check our gitbook!

Formations: There are some types of formation that were developed in order
to create figures and other images, for uses in engineering and spectacles.
They are:

2D Formations: We made functions to generate some simple
geometries, allowing the user to set the number of clovers used and the
size of the figure, the geometries options made until now are circle,
empty square, full square and triangle.
3D Formations: Besides the 2D figures, there are also some simple 3D
geometries, which are cube, sphere, and pyramid.
Alphabet: There is also the option to generate letters and words, using
our Clover swarm.
3D Figures: Lastly, we have the alternative to make other more complex
3D formations, for this we use a library called Open3D that deals with 3D
data, allowing the drones to create any 3D image the user inputs since
it's in the supported formats.

Transformations: In addition to creating the formations, it's important to give
the option of editing their disposition, so some operations were developed. It
also makes possible to execute more complex actions and activities with the
Clovers. The transformations operations are:

Scale: Changes the distance between the drones, increasing or
decreasing the image.
Translate: All the drones move the same distance in the chosen
directions.
Rotate: The formation rotates around a determined axis.

https://app.gitbook.com/s/C9O11TiXK1JPnlrpilLg/background-theory/system

Using FS-A8S

482

LED effects: Enjoying the LEDs included in the Clover, we made some
functions to apply effects in all the swarm, creating figures and operations
with the LEDs too.

Swarm Preview: The main goal of this feature is to help the user to visualize
how the swarm will behave in the simulation or real life, without using a lot of
computational power and avoiding some problems in the simulation. This way
a 2D or 3D image illustrating the drones' disposition can pop up on the
screen when using this function.

Using FS-A8S

483

First Person View (FPV): The FPV node makes it a lot easier to visualize
each drone's camera individually and also control each one of them at a time
using keyboard bindings.

All these features can be very useful for some applications and also be attractive
to arouse the curiosity of the general public.

Conclusion
Over the last months we studied a lot, grew, and surpassed our limits, trying to
explore some swarm applications, all to deliver the best possible project: Swarm
in Blocks. Our motivation was to facilitate such a complex task as the
manipulation of swarms of drones, through block programming, and it delighted
us a lot and we hope it will fascinate all our users. We tried to resume all the
project and its features in this article, but as there are many details and needed
explanations, it was made a gitbook, to explore them for those who are interested.

https://swarm-in-blocks.gitbook.io/swarm-in-blocks/introduction/swarm-in-blocks

Using FS-A8S

484

For us, the results achieved were very expressive and positive, however, we
believe that there is still room for improvement in the project, both considering the
robustness of the swarm and the simplification of the usability of our platform.
Improvement in the collision avoidance system, implementation of more
formations and tests in real Clovers are some of the points that we hope to
develop in future opportunities.

Finally, we thank the entire COEX team that made it possible for CopterHack
2022 to take place and all the support given during the competition. We are Atena
Team, creator of the Swarm in Blocks platform and we thank you for your
attention!

The Atena Team members

Guilherme Soares Silvestre : GitHub, LinkedIn
Eduardo Morelli Fares: GitHub, LinkedIn
Felipe Tommaselli: GitHub, LinkedIn
João Aires C. F. Marsicano: GitHub, LinkedIn
José Carlos Andrade do Nascimento: GitHub, LinkedIn
Rafael Saud C. Ferro: GitHub, LinkedIn

https://github.com/guisoares9
https://www.linkedin.com/in/guilherme-soares-silvestre-76570118b/
https://github.com/faresedu
https://www.linkedin.com/in/eduardo-fares-a271561a0/
https://github.com/Felipe-Tommaselli
https://www.linkedin.com/in/felipe-tommaselli-385a9b1a4/
https://github.com/Playergeek181
https://www.linkedin.com/in/joao-aires-correa-fernandes-marciano-53b426195/
https://github.com/joseCarlosAndrade
https://www.linkedin.com/in/jos%C3%A9-carlos-andrade-do-nascimento-71186421a
https://github.com/Rafael-Saud
https://www.linkedin.com/in/rafael-saud/

Using FS-A8S

485

Obstacle avoidance using artificial
potential fields method
CopterHack-2022, team Stereo.

Team information
The list of team members:

Denis Konstantinov, @den_konstantinov, engineer and developer.

The project repository is here

Project description

This repository contains obstacle avoidance system for quadcopters with
Raspberry Pi 4 onboard computer. The code in this repository is designed to work
with Clover Raspberry Pi image and special PX4-based firmware modified for
easier communication with Raspberry Pi.

Artificial potential fields method is based on considering quadcopter, obstacles
and target point as electric-charged points. Quadcopter and obstacles have
positive charge, and target point is assigned with negative charge. This results in
quadcopter "attracting" itself to the target point, while being repelled by the same-
signed charges of obstacles. Using this analogy, you can compute a safe,
collision-free trajectory, which can be executed by the vehicle.

https://github.com/den250400/potential-fields-obstacle-avoidance
https://github.com/den250400/potential-fields-obstacle-avoidance
https://clover.coex.tech/en/image.html
https://clover.coex.tech/en/firmware.html

Using FS-A8S

486

It's obvious that you need some sort of geometrical information about the
surrounding world if you want to avoid obstacles. This algorithm uses Intel
RealSense D435 depth camera - it provides a 3D point cloud which can be easily
used for potential fields computation.

Installation
This guide is intended to be used on Ubuntu 20.04. Python version is 3.8.10, but
it's very likely that it will work on other versions like 3.7, 3.9, 3.10 without any
changes.

1. Install the Clover simulator.
2. Install realsense_gazebo_plugin and realsense2_description:

 cd ~/catkin_ws/src
 git clone https://github.com/issaiass/realsense_gazebo_plugin
 git clone https://github.com/issaiass/realsense2_description
 cd ~/catkin_ws
 catkin_make

3. Replace your ~/catkin_ws/src/clover/clover_description folder with one in
this repository. This will add RealSense D435 to quadcopter model and make
other minor changes so you will be able to reproduce our results.

4. Install all necessary Python packages

 pip3 install -r requirements.txt
 sudo apt-get install ros-noetic-ros-numpy

5. Make sure your PYTHONPATH env variable is set as

https://clover.coex.tech/en/simulation.html
https://github.com/issaiass/realsense_gazebo_plugin
https://github.com/issaiass/realsense2_description

Using FS-A8S

487

If it's not, add the following paths to PYTHONPATH .

Launch
Launch the clover simulator and spawn some obstacles:

roslaunch clover_simulation simulator.launch

Open another terminal window, and launch the takeoff script. The drone will arm
its motors and take off to the altitude specified in takeoff.py script:

python3 ./scripts/takeoff.py

Then, you should open main.py script and specify the target point (as x, y, z
array). It is defined on the line

nav = AvoidanceNavigation(np.array([0, 0, 2]))

Finally, launch main.py to start the obstacle avoidance flight:

python3 main.py

Obstacle avoidance algorithm
description
This algorithm uses a point cloud produced by stereo camera to infer the flight
path by simulating a motion of charged particle. Each point from the point cloud is
considered as obstacle, and repels the vehicle with the force directed in 'point-
>vehicle' direction. The repelling force has a magnitude q_repel / dist (dist is
distance from vehicle to point). Similarly, an attraction point attracts the vehicle
with the constant magnitude of q_attract . The sum of these force vectors is
the desired flight direction.. The speed of a particle is set as speed argument
of AvoidanceNavigation and directed along the resulted force vector. This way, we
get a motion equation which we can solve numerically. Now, we have the
trajectory which can be executed by the vehicle.

The algorithm is still in development, so we can't guarantee that default
parameters will work in all cases. However, you may tweak the parameters
yourself. Here is a brief description of each parameter in descending order of
importance:

 speed - if your vehicle systematically crashes, the first thing you should do is
to decrease the flight speed. Values of 1.5-2 m/s show good performance on
most obstacle types

 PYTHONPATH=/home/<username>/catkin_ws/devel/lib/python3/dist-packages:/op

Using FS-A8S

488

 dist_threshold - this sets a 'sphere of influence' for individual obstacle
point. Larger values of this parameter will result in trajectories with bigger
margin from obstacle
 lead - this is a smoothing factor of trajectory execution. If this value is too
big, vehicle will ignore sharp obstacle avoidance maneuvers and risks
crashing into a small/thin obstacle. If this value is too small, vehicle will fly too
wobbly.
 q_repel - the strength of repelling force is determined by this parameter.

Using FS-A8S

489

The Clover Rescue Project
CopterHack-2022, Clover Rescue Team - When something went wrong.

Team information

The list of team members

Кирилл Лещинский, @k_leshchinskiy - TeamLead.
Кузнецов Михаил, @fletchling_dev - Software Developer.
Даниил Валишин, @Astel_1 - Tech Specialist/Python programmer.
Роман Сибирцев, @r_sibirtsev - Hardware engineer/tester.

Project description

Table of contents

Idea
How it works
Required hardware
Operating Instructions
Installation instructions
Work example/functions
Settings
Mobile version
Bots
Our plans for the future

Project Idea
The idea of this project came immediately, it lies on the surface. A system that
makes situations where pilots cannot find their flown away drone or stop it at full
speed flying into a wall, a thing of the past, is something that pilots have been
missing for a long time. The key feature of our software is that users can manage
their Clover from anywhere in the world, this software replaces FTP and SSH
(users can upload the code to their drone and run it directly from our site). Also, if
radio communication with the Clover is lost, it can be returned to the user's or
takeoff location with just one click. Moreover, the user can monitor the status in
realtime, as well as location, camera data, and airborne position data of the
drone. There are also functions that can be useful in emergency situations, such
as landing, hovering and disarming the drone remotely from our website. A mobile
version of the site with full functionality is also available!

Presentation video

Functional review video

https://t.me/k_leshchinskiy
https://t.me/fletchling_dev
https://t.me/Astel_1
https://t.me/r_sibirtsev
https://youtu.be/4bvOu0h3YU0
https://youtu.be/jjeBh1ch4Xo

Using FS-A8S

490

Link to the website

How It Works
Links to repositories:

https://github.com/DevMBS/CRTClient
https://github.com/DevMBS/CRTClover

The first repository is the main server that users and their drones connect to. This
server provides communication and control of the drone through a user-friendly
interface. The second repository represents the server that runs on the drone and
connects to the main server. This server reads and transmits telemetry to the
main server (which is displayed as a 3-D visualization). It also takes commands
from the user and executes them. The Socket.IO library is used to transfer data
between the client, server and drone. After connecting the client and the drone to
the server, they are added to a unique room with their UID, and already in it they
exchange data. You can learn more about how it works by visiting the
repositories.

Required Hardware
All you need is COEX Clover 3/4, Raspberry Pi 3/4, USB WIFI Modem and RPi
Camera!

Operating Instructions
Firstly, users need to register on our website.

https://48c5-94-29-124-254.eu.ngrok.io/
https://github.com/DevMBS/CRTClient
https://github.com/DevMBS/CRTClover

Using FS-A8S

491

After registration the main control panel and installation instructions open.

Installation Instructions
First, you need to connect to your Clover via SSH and paste the command
indicated in the instructions that opened (if it is not open, you can open it by
clicking on the "Instructions" button). The command looks like that:

When the software is installed, the server will automatically start. After installation,
you can forget about manually launching the software, it will automatically start
and connect to the main server after turning on the Clover!

Work Example, Functions

On the website there are several commands for controlling the drone. “Get photo”
allows you to get an image from the drone camera. The “Land” button lands the
drone. The "Return" command returns drone to the operator, according to GPS
coordinates (this requires a stable connection of the drone with 10 or more
satellites). "Hover" makes the drone hover in the air. "Disarm" instantly disables
the drone's motors, so you need to be careful with this command. The “Choose
Code” and “Upload & Run” buttons allow users to select a code written in Python,
upload it to the drone and run it. Also, users will see output of their code and all its
errors. There is also interactive map with markers, blue marker the is location of

wget https://48c5-94-29-124-254.eu.ngrok.io/assets/installers/install.sh && sud

Using FS-A8S

492

the user, purple marker is the location of his drone. Also, as you can see, there is
a real-time visualization of the Clover’s airborne position, as well as its altitude
and the average voltage between the battery cells.

Settings

In the settings users can set speed and altitude of the return.

Users can choose an action after return (hover or land).

...And the place where the drone will return (User coordinates or takeoff
coordinates).

Users can also set the period for automatically receiving photos from the drone.

Using FS-A8S

493

At the top of the website is the status of your drone (Disconnected/Connected,
disarmed, Connected, in flight).

Mobile Version
The mobile version of the site has absolutely the same functionality (swipe to the
right/left to move between control panels).

Using FS-A8S

494

Using FS-A8S

495

Bots on the social networks and
messengers
Bots on the social networks is an example of what you can do based on our
project. They have the main functionality of our website and The Clover Rescue
Team is still working on their features.

Using FS-A8S

496

Using FS-A8S

497

Using FS-A8S

498

Using FS-A8S

499

VK Bot Repository

https://github.com/Astel2022/CRTVkbot

Using FS-A8S

500

Link to the bot

Demonstration video of the bot

Our plans for the future
We do not plan to stop and want to continue the development. Here is a list of
what will be added.

1. Built-in code editor.
2. More drone control bots in social networks and messengers.
3. Socket API will be written so users can create their applications in different

programming languages based on our app.
4. Drone swarm controls.

https://vk.com/rescueclover
https://youtu.be/N3oFobVCmx4

Using FS-A8S

501

CopterCat_cm4
CopterHack-2022, команда CopterCat.

Team Information
Line-up:

Lapin Matvey (https://t.me/l_motya), engineer/programmer.
Konovalov Evgeny (https://t.me/egnknvlv), engineer/friend.
Skandakov Egor (https://t.me/hjbaa), friend.
Jalilov Emil, friend.

Project Description
Development of a modern board for PX4 FMUv6U firmware, 55x40 mm sizes and
an additional WiFi module to implement cool things, for example, a distributed
network.

Project idea

Flight controller on stm32h7 with space for RPi CM4 and built-in ESP32 to create
a distributed network.

Planned results

FMUv6U flight controller board and API for interacting with a distributed network
via RPi.

Using the "Clover" platform

At the stage of the project: debugging and demonstration of capabilities. After:
using CopterCat as the main one.

Specification

FMU

https://t.me/l_motya
https://t.me/egnknvlv
https://t.me/hjbaa

Using FS-A8S

502

STM32H753IIK6 480Mhz Cortex-M7
2Mb + 256Kb FLASH
1Mb RAM
ICM20602, ICM42605, BMI088, BMP388, BMM150
Fully compliant with FMU-v6u standard

Raspberry Pi

Support for RPi CM4 board.
SD card slot.
Ability to flash the built-in eMMC.
CAT24C256 EEPROM.
Support 2 cameras (CAM0 is two lines, CAM1 is four lines).
USB-OTG support.

ESP32

16MB external FLASH (W25Q128JVS).
8MB external PSRAM (LY68L6400SLIT).
Built-in antenna.
USB-TTL converter.

Remaining

USB-HUB USB2514B.
USB-PD with physical switching.
Communication between ESP32 and STM32 via UART.
3 power options.
4 universal GPIOs from ESP32.
USB Type-C.
Dimensions 40x55mm, board 4 layers.

Connectors and jumpers

Using FS-A8S

503

1. GPIO ESP32 4 I/O ports for connecting external equipment.
2. RPi CM4 connectors.
3. ESC pins 8 pcs.
4. Programming and debugging pins for JTAG STM32.
5. Camera connectors (22 pin cable with 0.5 mm distance between conductors).
6. Contact for connecting the address tape.
7. Main power contacts 5V.
8. JST-6 standard PX4 power cable.
9. JST-6 GPS+compass+5V.

Using FS-A8S

504

10. JST-4 I2C+5В.
11. USB Type-C.
12. JST-4 UART7+5В.
13. JST-4 I2C RPi+3.3B for connecting a rangefinder.
14. JST-4 UART5+5V.
15. JST-5 Standard connector for connecting the control receiver.
16. SD card slot (for RPi).
17. Jumper BOOT for STM32.
18. RPIBOOT jumper for flashing the RPi CM4 eMMC module.
19. Jumper for switching the USB connector operation mode (when the jumper is

closed, USB works as a HUB input and when connected to a computer,
STM32, ESP32 and RPi CM4 in OTG mode will be displayed; when the
jumper is open, USB will work to connect external devices to the RPi, for
example stereo cameras).

Firmware download

FMU

When you first start, the microcontroller will have to load the PX4-bootloader
through the JTAG port. detailed instructions here.

To connect to a computer:

1. Close jumper 19.
2. Connect USB Type-C to your computer.
3. The device should appear in QGC.

You can also flash firmware via RPi:

1. Install the RPi CM4 into the connector on the board.
2. Open jumper 19.
3. The device will appear in the /dev folder on the RPi.

ESP32

You can write a program either in Arduino IDE or in VS Code with the plugin esp-
idf. Then compile and upload to the microcontroller. You can download in two
ways.

From computer:

1. Close jumper 19
2. CP2104 will appear in the connected devices
3. Download the firmware according to the instructions for the selected IDE

With RPi CM4:

1. Install the RPi CM4 into the connector on the board.
2. Open jumper 19.
3. Compile your code to .bin format.
4. Upload the resulting file to the RPi.

https://docs.px4.io/master/en/software_update/stm32_bootloader.html#stm32-bootloader
http://qgroundcontrol.com/
https://www.arduino.cc/en/software
https://code.visualstudio.com/
https://habr.com/ru/post/530638/

Using FS-A8S

505

5. Download the firmware to the microcontroller using esptool.py
description+installation.

RPi CM4

The SD card slot works like a standard RPi. For boards with eMMC, the boot
order of the operating system does not differ from the CM4 IO Board instruction.

General information
All files required for ordering are located in the /gerbers folder here.
The project was made in the program KiCAD v6.
Component Libraries are from snapeda.

https://docs.espressif.com/projects/esptool/en/latest/esp32/index.html
https://www.jeffgeerling.com/blog/2020/how-flash-raspberry-pi-os-compute-module-4-emmc-usbboot
https://github.com/matveylapin/CopterCat_cm4
https://www.kicad.org/
https://www.snapeda.com/

Using FS-A8S

506

Ikshana — Autonomous valet parking
drone assistance
CopterHack-2022, team DJS Phoenix.

Team information

We are the DJS Phoenix, the official drone team of Dwarkadas. J. Sanghvi
College of Engineering.

The list of team members:

Shubham Mehta, shubhamdmehta3257@gmail.com, Team Lead.
Akhilesh Sadalgekar, akhilesh.sadalgekar01@gmail.com, Mechanical.
Aman Bhatt, aman.bhatt0001@gmail.com, Mechanical.
Manan Dedhia,manandedhia2001@gmail.com, Mechanical.
Harshal Warde, harshal.warde@gmail.com, Mechanical.
Karan Pandit, karandpandit26@gmail.com, Mechanical.
Soham P Dalvi, dalvisoham710@gmail.com, Mechanical.
Khushi Sanghvi, khushisanghvi940@gmail.com, Programming.
Ankit Sawant, ankitsawant26@gmail.com, Electronics.
Shubh Jatin Pokarne, shubhpokarne91@gmail.com, Electronics.
Parth Sawjiyani, sawjiyaniparth@gmail.com, Marketing.

Project description
Ikshana is a fully autonomous drone that operates in a parking lot. It scans for
available parking places and then guide drivers by directing them to an optimal
unoccupied parking location using LED Blinkers.

Using FS-A8S

507

Project idea

We came up with the concept of using drones to search for parking spots, this
alleviates the problem of having to do it manually which is tedious and time
consuming. It will help us save time and effort.

The driver will be able to see our drone, which will lead the vehicle to the parking
location.

The drone's arms include programmable LEDs. By blinking in a relay pattern,
these LEDs will direct you down the path, whether to turn right, left, continue or
stop.

The drone is equipped with sensors to maintain a safe distance in all direction and
avoid obstacles.

The potential outcomes

Problem

Getting around parking lots can be annoying at times and finding a vacant spot in
the parking lot is a time-consuming and difficult task.

Using FS-A8S

508

Solution

Ikshana will help the driver reach an ideal parking spot. With the help of Machine
Learning and ROS it will be able to find spaces for vehicle parking.

Such a system is really helpful in parking lots as it avoids hassles and commotion
while also reducing labor, being more efficient and time saving.

By the end of the project, we expect a DIY drone that has autonomous
functionality and it is eligible to perform the given task efficiently.

Using Clover platform

The COEX Clover platform is used for simulating and implementing OpenCV,
ROS for the drone. It helps us integrate ROS with our Raspberry Pi.

Additional information at the request of participants

After two years after the COVID-19 epidemic, there is a good opportunity for the
team to reunite. Previously, we spent the most of our time in our workshop.

However, we learn to work online through various online platforms. Although
procuring parts was time-consuming because very few suppliers were prepared to
ship their items, and even after placing orders, delivery of those parts might take
months. So, finally, we are able to collaborate and solve difficulties in a timely
manner. This journey of Copterhack'22 will be full of new insights and
experiences.

To find out more about our project visit
the link below
https://djs-phoenix.gitbook.io/ikshana/.

https://djs-phoenix.gitbook.io/ikshana/

Using FS-A8S

509

Autonomous Multirotor Landing
System (AMLS)

The goal is to automatically land a drone
on a moving platform

AMLS Article

In this Article we will describe AMLS project. Namely, AMLS Optical stabilization,
GPS holding, GPS following, Altitude holding, Grabbing, Weather protection,
Speed measurement and Illumination systems. In addition, we will make clear of
how it works and how it was done!

Our main GitHub repository

https://github.com/XxOinvizioNxX/Liberty-Way

Developers

Pavel Neshumov
Andrey Kabalin
Vladislav Yasnetsky

Table of contents
0. How does it work?

https://github.com/XxOinvizioNxX/Liberty-Way
mailto:xxoinvizionxx@gmail.com
mailto:astik452@gmail.com
mailto:vlad.yasn@gmail.com

Using FS-A8S

510

0.1. A video about our project
1. GPS hold and Flight to waypoints functions

1.1. Serial reading
1.2. UBlox GPS parsing
1.3. Set current waypoint
1.4. Waypoint edition (To fly to waypoints)
1.5. Waypoint stabilization

2. GPS following
3. Compass
4. Altitude stabilization (barometer)
5. Optical stabilization

5.1. So difficult and so important
5.2. First steps
5.3. Inverse approach
5.4. Java edition
5.5. Liberty-Way
5.6. Communication with the drone
5.7. Camera gimbal

6. Eitude AMLS Platform
6.1. Grabbing system
6.2. Weather protection system
6.3. Speed measurement system
6.4. Illumination system

7. Conclusion

0. How does it work?
The AMLS system consists of two parts:

The drone

Using FS-A8S

511

And the platform either mobile (implemented on a vehicle), either stable
(pick-up-point)

How the system operates:

Firstly, a drone with a delivery package is far from the platform and it has no
visual contact with it. The drone recieves GPS coordinates of a platform by
using cellular communication or any other radio channel (The drone has
Liberty-Link implemented on it. This module is able to adjust its position,
whatever the firmware of the flight controller. The module is installed inside
the line between a receiver and a flight controller.
The drone is moving to received coordinates. The coordinates might be
renewed in the process (but not frequently, thus preventing the channel from
overloading)
When the drone is close to the platform but there is still no visual contact, the
program runs GPS stabilization. Here the data is being transmitted over the
closest radio communication channel of high freqency, so the drone can
catch up with the platform.
Meanwhile, the drone descends (barometers are installed on both, the drone
and the platform). Descending goes on untill altitude reaches 1.5-2 meters
above the platform.
While descending and when visual contact with the platform camera is
established, the program enables visual (precision) stabilization. And as soon
as the drone's tag is within camera's field of view, the algorithm will capture
the drone.
When optical stabilization is enabled, GPS is working as a back up plan (in
case something goes wrong, GPS stabilization launches again).
In order to use optical stabilization the drone is equipped with ArUco tag
which can be captured by a camera and by using the closest radio
communication channel, the system transmits adjustment data to the drone.
Along with optical stabilization, the program launches landing algorithm. The
algorithm artificially and smoothly reduces the setpoint of height (Z) until it
reaches a certain threshold.
When the drone is approaching on the desirable height, the program enables
grabbing system implemented on the platform. Those grips are used to catch
and hold the drone in the process of landing and after the drone was caught.
When the landing is completed, the platform starts maintenance work and in
order to protect the drone frome external influences, the program enables

Using FS-A8S

512

weather protection and closes the roof above landing area.
Landing accomplished!

Short video about our project (clickable)

1. GPS hold and Flight to waypoints
functions
At the beginning, the drone with the package is far from the platform. Then via
cellular communication or another suitable radio channel, platform GPS
coordinates are sent to the drone (the Liberty-Link module is installed on the
drone, this module is capable of correcting its position, regardless of the firmware
of the flight controller. (The module is placed between the receiver (RC) and the
flight controller)

GPS module will be built in Liberty-Link, so it would have the ability to maintain
the drone's GPS position and follow GPS points.

Using FS-A8S

513

GPS-module will be used from the UBlox group (for instance, UBlox Neo-M8).
There will be 1 or 3 (to minimize the error) modules.

Modules operate via UART, configured to send data 5 times per second. The
Liberty-Link firmware will read data from the modules and calculate the
coordinates of the current position.

1.1. Serial reading

Reading data from a module into a buffer looks like this:

Using FS-A8S

514

1.2. UBlox GPS parsing

After that, latitude, longitude, a type of correction (2D, 3D) and the number of
satellites are calculated from the filled buffer. Parsing GPS data of the UBlox
protocol looks like this:

// Read data from the GPS module
while (GPS_serial.available() && new_line_found == 0) {
 // Stay in this loop as long as there is serial information from the GPS av
 char read_serial_byte = GPS_serial.read();
 if (read_serial_byte == '$') {
 // Clear the old data from the incoming buffer array if the new byte eq
 for (message_counter = 0; message_counter <= 99; message_counter++) {
 incoming_message[message_counter] = '-';
 }
 // Reset the message_counter variable because we want to start writing
 message_counter = 0;
 }
 // If the received byte does not equal a $ character, increase the message_
 else if (message_counter <= 99)
 message_counter++;

 // Write the new received byte to the new position in the incoming_message
 incoming_message[message_counter] = read_serial_byte;

 // Every NMEA line ends with a '*'. If this character is detected the new_l
 if (read_serial_byte == '*') new_line_found = 1;
}

Using FS-A8S

515

// If the software has detected a new NMEA line it will check if it's a valid l
if (new_line_found == 1) {
 // Reset the new_line_found variable for the next line
 new_line_found = 0;
 if (incoming_message[4] == 'L' && incoming_message[5] == 'L' && incoming_me
 // When there is no GPS fix or latitude/longitude information available
 // Set some variables to 0 if no valid information is found by the GPS
 l_lat_gps = 0;
 l_lon_gps = 0;
 lat_gps_previous = 0;
 lon_gps_previous = 0;
 number_used_sats = 0;
 }
 // If the line starts with GA and if there is a GPS fix we can scan the lin
 if (incoming_message[4] == 'G' && incoming_message[5] == 'A' && (incoming_m
 // Filter the minutes for the GGA line multiplied by 10
 lat_gps_actual = ((int)incoming_message[19] - 48) * (long)10000000;
 lat_gps_actual += ((int)incoming_message[20] - 48) * (long)1000000;
 lat_gps_actual += ((int)incoming_message[22] - 48) * (long)100000;
 lat_gps_actual += ((int)incoming_message[23] - 48) * (long)10000;
 lat_gps_actual += ((int)incoming_message[24] - 48) * (long)1000;
 lat_gps_actual += ((int)incoming_message[25] - 48) * (long)100;
 lat_gps_actual += ((int)incoming_message[26] - 48) * (long)10;
 // To convert minutes to degrees we need to divide minutes by 6
 lat_gps_actual /= (long)6;
 // Add multiply degrees by 10
 lat_gps_actual += ((int)incoming_message[17] - 48) * (long)100000000;
 lat_gps_actual += ((int)incoming_message[18] - 48) * (long)10000000;
 // Divide everything by 10
 lat_gps_actual /= 10;

 // Filter minutes for the GGA line multiplied by 10
 lon_gps_actual = ((int)incoming_message[33] - 48) * (long)10000000;
 lon_gps_actual += ((int)incoming_message[34] - 48) * (long)1000000;
 lon_gps_actual += ((int)incoming_message[36] - 48) * (long)100000;
 lon_gps_actual += ((int)incoming_message[37] - 48) * (long)10000;
 lon_gps_actual += ((int)incoming_message[38] - 48) * (long)1000;
 lon_gps_actual += ((int)incoming_message[39] - 48) * (long)100;
 lon_gps_actual += ((int)incoming_message[40] - 48) * (long)10;
 // To convert minutes to degrees we need to divide minutes by 6
 lon_gps_actual /= (long)6;
 // Add multiply degrees by 10
 lon_gps_actual += ((int)incoming_message[30] - 48) * (long)1000000000;
 lon_gps_actual += ((int)incoming_message[31] - 48) * (long)100000000;
 lon_gps_actual += ((int)incoming_message[32] - 48) * (long)10000000;
 // Divide everything by 10
 lon_gps_actual /= 10;

 if (incoming_message[28] == 'N')
 // When flying north of the equator the latitude_north variable wil
 latitude_north = 1;
 else
 // When flying south of the equator the latitude_north variable wil
 latitude_north = 0;

 if (incoming_message[42] == 'E')
 // When flying east of the prime meridian the longiude_east variabl
 longiude_east = 1;
 else
 // When flying west of the prime meridian the longiude_east variabl
 longiude_east = 0;

 // Filter the number of satillites from the GGA line
 number_used_sats = ((int)incoming_message[46] - 48) * (long)10;
 number_used_sats += (int)incoming_message[47] - 48;

Using FS-A8S

516

1.3. Set current waypoint

When required data is received the main magic happens. To enable maintaining
of the current position it will be enough to set the flag waypoint_set = 1; and set
current coordinates as a waypoint:

l_lat_waypoint = l_lat_gps;
l_lon_waypoint = l_lon_gps;

After that, the calculation of the error in the coordinates will begin, correction
works with the help of a PD - regulator. For D - component we use rotation
memory.

1.4. Waypoint edit (To fly to waypoints)

If you just set the new l_lat_waypoint and l_lon_wayoint , which are located at
a great distance from the drone, the drone will not be able to fly normally and
stabilize at these coordinates. For smooth adjustments l_lat_gps_float_adjust
and l_lon_gps_float_adjust can be used. These are float variables, changing
which will smoothly shift l_lat_waypoint and l_lon_waypoint .

For example, if in the main loop you will constantly add a certain value to these
variables:

l_lat_gps_float_adjust += 0.0015;

 if (lat_gps_previous == 0 && lon_gps_previous == 0) {
 // If this is the first time the GPS code is used
 // Set the lat_gps_previous variable to the lat_gps_actual variable
 lat_gps_previous = lat_gps_actual;
 // Set the lon_gps_previous variable to the lon_gps_actual variable
 lon_gps_previous = lon_gps_actual;
 }

 // Divide the difference between the new and the previous latitudes by
 lat_gps_loop_add = (float)(lat_gps_actual - lat_gps_previous) / 10.0;
 // Divide the difference between the new and the previous longitudes by
 lon_gps_loop_add = (float)(lon_gps_actual - lon_gps_previous) / 10.0;

 // Set the l_lat_gps variable to the previous latitude value
 l_lat_gps = lat_gps_previous;
 // Set the l_lon_gps variable to the previous longitude value
 l_lon_gps = lon_gps_previous;

 // Remember the new latitude value in the lat_gps_previous variable for
 lat_gps_previous = lat_gps_actual;
 // Remember the new longitude value in the lat_gps_previous variable fo
 lon_gps_previous = lon_gps_actual;
 }

 // If the line starts with SA and if there is a GPS fix we can scan the lin
 if (incoming_message[4] == 'S' && incoming_message[5] == 'A')
 fix_type = (int)incoming_message[9] - 48;

}

Using FS-A8S

517

With set waypoint, the drone will move smoothly in the given direction. In the
future, this will be used for the smooth drone's acceleration and deceleration while
moving to its destination.

1.5. Waypoint stabilization

Using FS-A8S

518

if (waypoint_set == 1) {
 //If the waypoints are stored

 // Adjust l_lat_waypoint
 if (l_lat_gps_float_adjust > 1) {
 l_lat_waypoint++;
 l_lat_gps_float_adjust--;
 }
 if (l_lat_gps_float_adjust < -1) {
 l_lat_waypoint--;
 l_lat_gps_float_adjust++;
 }

 // Adjust l_lon_waypoint
 if (l_lon_gps_float_adjust > 1) {
 l_lon_waypoint++;
 l_lon_gps_float_adjust--;
 }
 if (l_lon_gps_float_adjust < -1) {
 l_lon_waypoint--;
 l_lon_gps_float_adjust++;
 }

 // Calculate the latitude error between waypoint and actual position
 gps_lon_error = l_lon_waypoint - l_lon_gps;
 // Calculate the longitude error between waypoint and actual position
 gps_lat_error = l_lat_gps - l_lat_waypoint;

 // Subtract the current memory position to make room for the new value
 gps_lat_total_avarage -= gps_lat_rotating_mem[gps_rotating_mem_location];
 // Calculate the new change between the actual pressure and the previous me
 gps_lat_rotating_mem[gps_rotating_mem_location] = gps_lat_error - gps_lat_e
 // Add the new value to the long term average value
 gps_lat_total_avarage += gps_lat_rotating_mem[gps_rotating_mem_location];

 // Subtract the current memory position to make room for the new value
 gps_lon_total_avarage -= gps_lon_rotating_mem[gps_rotating_mem_location];
 // Calculate the new change between the actual pressure and the previous me
 gps_lon_rotating_mem[gps_rotating_mem_location] = gps_lon_error - gps_lon_e
 // Add the new value to the long term avarage value
 gps_lon_total_avarage += gps_lon_rotating_mem[gps_rotating_mem_location];

 // Increase the rotating memory location
 gps_rotating_mem_location++;
 if (gps_rotating_mem_location == 35)
 // Start at 0 when the memory location 35 is reached
 gps_rotating_mem_location = 0;

 // Remember the error for the next loop
 gps_lat_error_previous = gps_lat_error;
 gps_lon_error_previous = gps_lon_error;

 //Calculate the GPS pitch and roll corrections as if the nose of the multic
 //The Proportional part = (float)gps_lat_error * gps_p_gain.
 //The Derivative part = (float)gps_lat_total_avarage * gps_d_gain.
 gps_pitch_adjust_north = (float)gps_lat_error * gps_p_gain + (float)gps_lat
 gps_roll_adjust_north = (float)gps_lon_error * gps_p_gain + (float)gps_lon_

 if (!latitude_north)
 // Invert the pitch adjustmet because the quadcopter is flying south of
 gps_pitch_adjust_north *= -1;
 if (!longiude_east)
 // Invert the roll adjustmet because the quadcopter is flying west of t
 gps_roll_adjust_north *= -1;

Using FS-A8S

519

2. GPS following
The main part of stabilization using GPS coordinates was the development of an
algorithm for predicting the position of the drone. The simplest idea was to use a
mathematical calculation of the next drone's position. This is calculated for the
most accurate positioning in relation to the landing platform.

At the beginning we developed a simple algorithm for calculating the coefficient of
coordinates' change. The development was done using Python. At the stage of
testing this algorithm, the problem of simulating the generation of GPS
coordinates arose. To solve this problem, many different resources were used:
from open source homemade navigators to trying to use the Google Maps,
Yandex Maps or 2GIS APIs. And only after 3 months, we thought of a simple
solution: to change the values with some delta and to visualize using MatPlotLib
or PyQtGraph. Prior to this, all testing of the algorithm was carried out using the
PX4 firmware toolkit and the Gazebo drone motion simulator. As a result, many
formalities were overcome in terms of communicating with the simulator and
increasing performance (click on the picture to see the video).

The result of the GPS prediction (clickable):

The end result reached a point when the error of the predicted position varies
from 0 to 70 centimeters.

 //Because the correction is calculated as if the nose was facing north, we
 gps_roll_adjust = ((float)gps_roll_adjust_north * cos(angle_yaw * 0.017453)
 gps_pitch_adjust = ((float)gps_pitch_adjust_north * cos(angle_yaw * 0.01745

 //Limit the maximum correction to 300. This way we still have the full cont
 if (gps_roll_adjust > 300) gps_roll_adjust = 300;
 if (gps_roll_adjust < -300) gps_roll_adjust = -300;
 if (gps_pitch_adjust > 300) gps_pitch_adjust = 300;
 if (gps_pitch_adjust < -300) gps_pitch_adjust = -300;
}

Using FS-A8S

520

3. Compass
Before optical stabilization launches (during GPS stabilization process), to
calculate the GPS correction vector, you need to know the exact angle from the
compass. For this, a compass built into the GPS module is used.

Because during the flight, the roll and pitch angles change and a user needs to
correct the values from the compass. In general, calculating the angle from the
compass looks like this:

It is clear that the angle from the compass can also be used to maintain the yaw
angle of the drone. With point-to-point flights, this may be realized. But at the
moment, there is no urgent need for this, because after the start of optical
stabilization, the algorithm is able to correct the drone regardless of its yaw angle.
Also, during optical stabilization, the yaw angle is automatically corrected.

4. Altitude stabilization (barometer)
Before optical stabilization launches (during GPS stabilization process), our
Liberty-Link module will be able to maintain altitude using a barometer.

The platform, as well as the Liberty-Link, will have MS5611 barometers.

// The compass values change when the roll and pitch angles of the quadcopter c
// The 0.0174533 value is phi/180 as the functions are in radians in stead of d
compass_x_horizontal = (float)compass_x * cos(angle_pitch * -0.0174533) + (floa
compass_y_horizontal = (float)compass_y * cos(angle_roll * 0.0174533) + (float)

// Now that the horizontal values are known the heading can be calculated. With
// Please note that the atan2 uses radians in stead of degrees. That is why the
if (compass_y_horizontal < 0)actual_compass_heading = 180 + (180 + ((atan2(comp
else actual_compass_heading = (atan2(compass_y_horizontal, compass_x_horizontal

// Add the declination to the magnetic compass heading to get the geographic no
actual_compass_heading += declination;
// If the compass heading becomes smaller than 0, 360 is added to keep it in th
if (actual_compass_heading < 0) actual_compass_heading += 360;
// If the compass heading becomes larger then 360, 360 is subtracted to keep it
else if (actual_compass_heading >= 360) actual_compass_heading -= 360;

Using FS-A8S

521

According to the documentation, the height resolution is 10 cm. The algorithm will
take the pressure values and by passing it through the PID-controller will stabilize
the drone's altitude by changing the Throttle (3rd channel).

Altitude hold test (clickable):

During the flight along the waypoint, the setpoint of the pressure will decrease in
order to increase the altitude (it is safer to fly in a straight line at a high altitude, so
the drone would not crash into anything). And during GPS stabilization (when the

Using FS-A8S

522

drone is already close to the platform), the drone will be set with a setpoint of
pressure that correlates with ~ 1.5-2m height above the platform.

5. Optical stabilization

5.1. So difficult and so important

Optical stabilization is the most important and challenging part of our project. In
the current condition it is possible to keep the drone above the platform still only
using these algorithms. The current version of the OIS algorithm, along with a
description of the usage and making, is available in our main GitHub repository. In
the future, GPS stabilization will be added to it.

5.2. First steps

And as we couldn't predict the possibility of accomplishing our task, first of all, we
started to think about the solution for the stabilization system. Afterwards, we
settled with the stabilization using augmented reality tags. Firstly, it won't take
much finances as we do not need GPS or RTK systems and it will be accurate
enough to accomplish its purpose. Our first idea was to attach Raspberry Pi with
Liberty_X as it was embodied in COEX Clover and to let Raspberry Pi handle all
of the maths.

First optical stabilization prototype test (clickable):

But few tests showed that Raspberry Pi computing power is not enough for
amount of data needed to stabilize the drone. Furthermore, the idea of installing a
Raspberry Pi on each drone is irrational for its own.

Also, we had middling prototypes, for example, attempts to use color markers
(circles of different colors), but these ideas did not work well enough.

Using FS-A8S

523

5.3. Inverse approach

Then we came up with the idea of separating drone and stabilization system so
the main math will be accomplished on the landing platform with powerful
machine.

This was how we ended up with our current optical stabilization algorithm - the
camera which is connected to a powerful machine and the machine is attached to
the platform. The drone only has 4x4 ArUco tag and its controller.

Then, we came up with using Pose Estimation algorithms from OpenCV library.
The first tests showed us that we are on the right track!

Pose Estimation Python (clickable):

But, the algorithms were far from perfect. For example, since the code was written
in Python (https://github.com/XxOinvizioNxX/Liberty-X_Point), the performance
was not satisfyingly, and there was no suitable threading control either. Therefore,

https://github.com/XxOinvizioNxX/Liberty-X_Point

Using FS-A8S

524

we had to change something.

5.4. Java edition

Having weighed all the pros and cons, it was decided to rewrite all optical
stabilization using Java. This is how the first version of Liberty-Way appeared.
This time, it was decided to approach the OOP thoroughly, and, after a little
tweaking, an excellent stabilization and landing algorithm was obtained.

Landing test on Liberty-Way v.beta_0.0.1 (clickable):

5.5. Liberty-Way

Then many improvements and bug fixes followed. As a result, Liberty-Way is a
cross-platform web sarvar application that is very convenient for configuration and
debugging. Also, in the latest versions (beta_1.0.3 - beta_1.1.2) a blackbox
feature was introduced (for recording logs), as well as communication with the
platform and many other necessary algorithms.

Full description, including all settings, startup, etc. you can find in our GitHub
repository: https://github.com/XxOinvizioNxX/Liberty-Way

Video of static stabilization (clickable):

https://github.com/XxOinvizioNxX/Liberty-Way

Using FS-A8S

525

Liberty-Way can even stabilize a "thrown" drone (clickable):

There is a small bug in the video with the rotation angle, in the new release it has
been fixed!

And, of course, example of how it works in motion (tested with beta_0.0.3 release)
(clickable):

Using FS-A8S

526

All basic settings are conveniently placed in separate JSON files (settings, PID),
which allows a user to quickly change the required parameters without rebuilding
the application. In fact, to run the application, you just need to download the latest
release, unpack the archive and run it through the launcher corresponding to the
preferable OS.

5.6. Communication with the drone

The Liberty-Way connects to the Liberty-Link module installed on the drone and
adjusts its position by directly controlling four main channels of the remote control.
In one cycle (each frame from the camera), 12 bytes of correction data are sent to
the module:

Bytes description:

Roll bytes - Roll correction values
Pitch bytes - Pitch correction values
Yaw bytes - Yaw correction values
Altitude bytes - Altitude correction values
Service info - sets the drone state (0 - Nothing to do, 1 - Stabilization, 2 -
Landing (command not implemented and will be removed in the future. This
is not a real landing, just to tell the drone to start decreasing altitude), 3 -
Disable motors)
Check byte - XOR sum of all previous bytes that is compared via
transmittion in order to verify the data
Data suffix - unique pair of ASCII symbols that is not represented in the
packet in any form and that shows the end of the packet

On the drone side (Liberty-Link module), data reading is performing as follows:

Using FS-A8S

527

As a result, there are 4 variables:

direct_roll_control
direct_pitch_control
direct_yaw_control
direct_throttle_control

while (Telemetry_serial.available()) {
 tdc_receive_buffer[tdc_receive_buffer_counter] = Telemetry_serial.read();
 if (tdc_receive_byte_previous == 'L' && tdc_receive_buffer[tdc_receive_buff
 tdc_receive_buffer_counter = 0;
 if (tdc_receive_start_detect >= 2) {
 tdc_check_byte = 0;
 for (tdc_temp_byte = 0; tdc_temp_byte <= 8; tdc_temp_byte++)
 tdc_check_byte ^= tdc_receive_buffer[tdc_temp_byte];
 if (tdc_check_byte == tdc_receive_buffer[9]) {
 direct_roll_control = (uint32_t)tdc_receive_buffer[1] | (uint32
 direct_pitch_control = (uint32_t)tdc_receive_buffer[3] | (uint3
 direct_yaw_control = (uint32_t)tdc_receive_buffer[5] | (uint32_
 direct_throttle_control = (uint32_t)tdc_receive_buffer[7] | (ui
 direct_service_info = (uint32_t)tdc_receive_buffer[8];

 if (direct_roll_control > 1100 && direct_roll_control < 1900 &&
 direct_pitch_control > 1100 && direct_pitch_control < 1900
 direct_yaw_control > 1100 && direct_yaw_control < 1900 &&
 direct_throttle_control > 1100 && direct_throttle_control <
 /*flight_mode == 2 &&*/ channel_7 > 1500) {
 tdc_timer = millis();
 tdc_working = 1;
 }
 else
 tdc_working = 0;
 }
 else {
 direct_roll_control = 1500;
 direct_pitch_control = 1500;
 tdc_working = 0;
 }
 } else
 tdc_receive_start_detect++;
 }
 else {
 tdc_receive_byte_previous = tdc_receive_buffer[tdc_receive_buffer_count
 tdc_receive_buffer_counter++;
 if (tdc_receive_buffer_counter > 11)tdc_receive_buffer_counter = 0;
 }
}
if (millis() - tdc_timer >= 500) {
 tdc_working = 0;
}
if (tdc_working && direct_service_info == 2 && !return_to_home_step)
 return_to_home_step = 3;
if (!tdc_working)
 return_to_home_step = 0;
if (!tdc_working || direct_service_info < 1) {
 direct_roll_control = 1500;
 direct_pitch_control = 1500;
 direct_yaw_control = 1500;
 direct_throttle_control = 1500;
}

Using FS-A8S

528

Which are directly added to the data received from the control panel. Probably, in
the future, other data will be added, at least for working with GPS. Stay tuned for
updates in our repository.

5.7. Camera gimbal

To operate our system in real conditions, it is required to minimize camera
shaking if we don't want to lose the tag on the drone. For that reason, a 3D model
of a gimbal for attaching the drone to the platform was developed to stabilize a
conventional webcam.

Camera mount:

Camera wire fixing (ferrite filter on the wire):

Using FS-A8S

529

Fixing of the "crabs" latches on the suspension substrate:

An approximate view of the assembly of the entire suspension mechanism:

Using FS-A8S

530

6. Eitude AMLS Platform
The platform is an interconnected system for landing the drone. The platform was
planned to be controlled via the Serial interface, using the G-Code commands:
The current platform code can be found in the Eitude GitHub repository:
https://github.com/XxOinvizioNxX/Eitude

6.1. Grabbing system

As you may know it doesn't matter how good is our stabilization, without grabbing
system the drone will crash eventually. Hence we developed a 3D model of a
grabbing system with 4 grips that have a hook at the end of each one. This will
allow the system to slowly grab the drone while it lands and hold it steady after
landing.

https://github.com/XxOinvizioNxX/Eitude

Using FS-A8S

531

6.2. Weather protection system

As for the weather protection, we developed a 3D model to create a roof that will
protect the drone from weather conditions while it is on the platform. The AMLS
weather protection system consists of scissor-like mechanisms covered with a
canvas, which are located around the edges of the platform. After a successful
landing, the mechanisms on both sides of the platform close and protect the
drone from external influences. The roof structure itself makes it light and strong,
and the scissor-like mechanisms allow it to simply fold and unfold itself. Moreover,
the assembly of such mechanisms will be simple and reliable.

Using FS-A8S

532

6.3. Platform speedometer

In order to land on a quickly moving platform, it is very useful to know its speed.
For now, the platform does not have a GPS module, or any other way to measure
absolute speed. Therefore, for a temporary solution to this problem, it was
decided to calculate the speed using an accelerometer. For example, MPU6050.
The IMU is mounted into the prototype platform through a soft backing and it's
covered with a cap to protect it from the wind. The stabilization algorithm (Liberty-
Way) sends a request to the platform L1 to test the speed. A message S0 L
<speed in km / h> is returned as a response.

Speedometer test (inside the gray circle, lower right parameter (SPD) - speed in
km / h) (Clickable):

Using FS-A8S

533

To calculate the speed, the acceleration is taken for short time periods, then
multiplied with time, which results with the instantaneous speed. Then this speed
is constantly added to the previous value:

Despite having various filters, due to the error, the speed may not "return" to 0,
therefore, vibrations are also measured, and if they are less than the certain
threshold, it is considered that the platform is at a standstill and the speed
gradually resets to zero.

void speed_handler(void) {
 gyro_signalen();

 // Filter accelerations
 acc_x_filtered = (float)acc_x_filtered * ACC_FILTER_KOEFF + (float)acc_x *

 speed = acc_x_filtered;
 // Convert acceleration to G
 speed /= 4096.0;
 // Convert to m/s^2
 speed *= 9.81;

 // Multiply by dt to get instant speed in m/ms
 speed *= (millis() - speed_loop_timer);

 // Reset timer
 speed_loop_timer = millis();

 // Convert to m/s
 speed /= 1000.0;
 // Convert to km/h
 speed *= 3.6;

 // Accumulate instantaneous speed
 speed_accumulator += speed;

 if (!in_move_flag) {
 // If the platform is not moving, reset the speed
 speed_accumulator = speed_accumulator * SPEED_ZEROING_FACTOR;
 }
}

Using FS-A8S

534

The complete code of the speedometer can be found in the Eitude repository on
GitHub: https://github.com/XxOinvizioNxX/Eitude

6.4. Platform light sensor

As our platform must work in various environmental conditions, and optical
stabilization is very demanding on the visibility of the ArUco marker, it is important
to have an automatic system for measuring the camera exposure by the level of
illumination around it, and turning on additional illumination if there is a lack of
lighting. In the long term, it is planned to use specialized sensors, for example, the
BH1750, as light sensors.

In the current version of the prototype, 6 LEDs are used as a light sensor and an
ADC built into the microcontroller. The stabilization algorithm (Liberty-Way) sends
a request L0 to the platform to check the illumination level. A message S0 L
<luminance> is returned as a response.

Test for determining the level of illumination using LEDs (clickable):

https://github.com/XxOinvizioNxX/Eitude

Using FS-A8S

535

Exposure adjustment and adding additional illumination tests (clickable):

7. Conclusion
At the moment, there is a debugged prototype of optical stabilization, GPS
holding, altitude stabilization via barometer, different platform prototypes and a
great amount of 3D models eager to be constructed. The project of the
automatical landing of a drone onto a moving platform is not yet complete.

Follow the updates:

In our repository GitHub: https://github.com/XxOinvizioNxX/Liberty-Way
On our YouTube channel: https://www.youtube.com/channel/UCqN12Jzy-
1eJLkcA32R0jdg

https://github.com/XxOinvizioNxX/Liberty-Way
https://www.youtube.com/channel/UCqN12Jzy-1eJLkcA32R0jdg

Using FS-A8S

536

In the future, we plan to do much more new and interesting stuff!

Using FS-A8S

537

clever-show
Software for making the drone show controlled by Raspberry Pi, PX4 and COEX
Clover package.

Create animation in Blender, convert it to drone paths, set up the drones and run
your own show!

Project repository: https://github.com/CopterExpress/clever-show.

Demo video

12 drones perform in a show in Electrotheatre Stanislavsky, Moscow.

Team
Arthur Golubtsov, software engineer in COEX, https://github.com/goldarte
Artem Vasyunik, software engineer intern in COEX,
https://github.com/artem30801

https://github.com/CopterExpress/clover
https://github.com/CopterExpress/clever-show
https://github.com/goldarte
https://github.com/artem30801

Using FS-A8S

538

Innopolis Open 2020 - L22_ÆRO team

Team
Yuryev Vasily.
Okoneshnikov Dmitriy.

Final task description
New technologies are being implemented into various sectors of the economy
including agricultural industry. Drones or UAV are no exception. Thanks to their
usage, assessment of agricultural territories' states and analysis of landscape
components became more effective and accessible.

The final task of Innopolis Open 2020 was dedicated to monitoring agricultural
territories and consisted of the following elements:

Takeoff (from QR-code) and landing (onto a small colored marker).
QR-code recognition.
Colored objects recognition (Colored markers were used to show "agricultural
territories").
Determination of their coordinates (their locations change).
Making a report using the gathered data.

https://vk.com/vasily_0x59
https://vk.com/okoneshdmitriy

Using FS-A8S

539

Code
The code is available on GitHub:
https://github.com/vas0x59/ior2020_uav_L22_AERO.

Main program
When implementing the code, in the original concept we used our own message
types, multiple nodes, and other ROS stuff. For this you need to create a package
and compile it, but due to the specifics of the competition (a single SD card was
used for all teams), all the code was merged into a single file. This approach
made debugging much more difficult, but running the code on the drone became
much easier.

Parts of the program:

1. Takeoff.
2. QR-code recognition.
3. Color markers recognition.
4. Landing.
5. Generating a report and a video.

The final coordinates of markers are automatically grouped and averaged data
from the recognition system received for the entire flight. The "Zig-zag" trajectory
was chosen to cover the entire territory. The Gazebo simulator is used for
debugging.

Color markers
 l22_aero_vision/src/color_r_c.py

For image processing and object detection, we used functions from the OpenCV
library.

Algorithm:

1. Receiving the image and camera parameters.
2. Building a mask based on a specific color range (in HSV format).
3. Detection of contours of colored objects.
4. Determining the object type, getting the key points of the object in the image.
5. Determining the position of squares and circles using solvePnP based on the

actual size of objects and key points in the image (OpenCV Docs).
6. Sending results to the topics /l22_aero_color/markers and

 /l22_aero_color/circles (coordinates relative to main_camera_optical
frame).

During the development, our own message types and a service for changing the
detector parameters during the landing were created. (ColorMarker ,
 ColorMarkerArray , SetParameters).

https://github.com/vas0x59/ior2020_uav_L22_AERO
https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d

Using FS-A8S

540

To convert the position of colored objects into aruco_map frame TF library was
used. (http://wiki.ros.org/tf)

Due to distortions at the edges of the image from the fisheye lens, all the
recognized contours located near the edge of the image are ignored. This filter is
disabled during landing. The object type is determined using the contour analysis
functions (approxPolyDP - number of vertexes; minAreaRect , contourArea - area
of bounding rect / area of the contour; minAreaRect - aspect ratio).

Examples of marker recognition:

http://wiki.ros.org/tf

Using FS-A8S

541

Visualization in RViz
 l22_aero_vision/src/viz.py

To debug object recognition, a script has been created that visualizes the
coordinates of markers in the RViz utility.

QR-code

The PyZbar library was used to perform the QR-code recognition. In order to
improve the accuracy of QR-code recognition, flights around the QR-code were
performed at low altitude.

Landing
Landing is performed in 3 stages:

Using FS-A8S

542

1. Flight to the intended landing zone and hovering at an altitude of 1.5 m.
2. Descending to a height of 0.85 m with 3 adjustments to the marker

coordinates relative to aruco_map frame.
3. Descending for several seconds with adjustments based on the coordinates

of the landing marker in body coordinate system (since ArUco-markers may
no longer be visible), instead of navigate , set_position is used.

Gazebo
Due to limitations of opportunities to test the code on a real drone, we decided to
use the Gazebo simulator.

To run the Clover software package in the simulator, you can use this set of
scripts or original instruction from PX4.

For Innopolis Open we have prepared several test scenes.
ior2020_uav_L22_AERO_sim.

Also, the use of the simulator accelerated the debugging of the full code
execution, since the launch was performed with real time factor = 2.5.

https://github.com/vas0x59/clever_sim
https://dev.px4.io/v1.9.0/en/simulation/ros_interface.html
https://github.com/vas0x59/ior2020_uav_L22_AERO_sim

Using FS-A8S

543

During testing, some problems were found (e.g. incorrect position of aruco_map)
while using distortion in the camera plugin, so the simulator used a Pinhole
camera (without any distortions from the lens).

ROS
Created nodes, topics, messages and services.

Nodes

 l22_aero_vision/color_r_c.py - recognition of colored objects.
 l22_aero_vision/viz.py - visualization in RViz
 l22_aero_code/full_task.py - main code.

Topics

 /l22_aero_color/markers (l22_aero_vision/ColorMarkerArray) - list of
rectangular markers.
 /l22_aero_color/circles (l22_aero_vision/ColorMarkerArray) - list of round
markers.
 /l22_aero_color/debug_img (sensor_msgs/Image) - image for debugging.

Using FS-A8S

544

 /qr_debug (sensor_msgs/Image) - image for debugging.

Messages

 ColorMarker

string color
int16 cx_img
int16 cy_img
float32 cx_cam
float32 cy_cam
float32 cz_cam
float32 size1
float32 size2
int16 type

 ColorMarkerArray

std_msgs/Header header
l22_aero_vision/ColorMarker[] markers

Services

 SetParameters

float32 rect_s1
float32 rect_s2
float32 circle_r
int32 obj_s_th
int32 offset_w
int32 offset_h

Using FS-A8S

545

Copter spheric guard

Introduction
Probably, everyone who has held a copter has had to fly it indoors. Such flights
are associated with considerable risk of damaging the copter upon hitting walls
and various items. Flying even in a relatively large space is associated with the
risk of hitting an obstacle: there might be a tree or a building in the path of the
copter, to say nothing about flying in confined spaces. Such "crash tests" are not
very pleasant, and in the best case may cause losing a considerable sum on
repairs, and in the worst case — in losing the copter. Such situations are even
more unpleasant for a beginner who cannot avoid an obstacle and is just learning
to fly.

All this made us search for a solution. Unfortunately, searching the Internet did not
provide a sufficiently simple and, more importantly, cheap solution for ordinary
users. For example, propeller guard protects the propellers themselves quite well,
but upon the slightest touch upon an obstacle the copter would flip over and fall
down. In general, guard either did not protect the copter fully or looked awkward
and was too scarcely available.

We made a difficult decision: we had to make it entirely ourselves and almost
from scratch, and the goal was to make it lightweight and easy to manufacture.

Development
As a result of searching for a solution that would fit all our requirements, we
ended with several similar options. It was decided to make the guard in the shape
of a semiregular polyhedron (examples include fullerene, carbon, or a pentakis
dodecahedron) — it was chosen as the most pleasing to the eye. In addition, such
a guard is easily scalable to the desired size.

Using FS-A8S

546

In creating such a shape, two types of edges (beams) are used: short and long
ones, their length is calculated based on the desired diameter of a polyhedron
inscribed into a sphere. For better understanding, I will insert all necessary
formulas from Wikipedia below.

The corner joints (fittings) were not very easy either. They are of two types as
well: with five faces on the vertex (five beams protrude from the vertex) and with
six faces (six rays protrude from the vertex).

First models
A specification has been prepared for the ease of monitoring the manufacturing
process, and we started modeling.

Making simple calculations for the required size, we built a model in Inventor
CAD.

In the progress of designing, we faced problems in modeling corner joints, but
they were solved by simplifying the design, and the differences of the angles were
compensated for by flexible materials. Thus, all joints fit slightly tightly.

Using FS-A8S

547

(Elements of guard fasteners to the body)

Using FS-A8S

548

Materials
During the design process, the question arose about a lightweight and strong
material to be used for the guard. The answer, as always, was unexpected. We
saw bamboo sticks: they were thin enough to not affect the aerodynamics, had
sufficient flexibility and were quite strong. Then, the question was about how to
make fittings, and of what material. Surely, it should be 3D printing! A 3D printer is
a generally indispensable thing, especially for those who like doing something
themselves. In addition, due to their moderate price, they are widespread enough.
Such a printer may be used to make items of almost any complexity. That is what
we need!

Convert ready models to .stl, put them into a slicer (Cura in our case), enter the
setting for a particular printer and plastic, and start printing.

To reduce the weight we chose ABC plastic, which is lightweight and available.

The sticks were cut to the calculated length and prepared for subsequent work.

Assembly and installation
After everything has been printed and cut, it is time to assemble the guard.

Using FS-A8S

549

Assembly is the most crucial moment, as it requires a special algorithm.

From a five-beam fitting, only short beams protrude, while from a six-beam fitting
— only every second long one.

Assembly:

1. First, assemble all five-beam vertices.
2. Put a six-beam vertice on every beam protruding from a five-beam vertice.
3. Interconnect the six-beam fittings with long sticks.
4. Connect assembled five-beam vertices to the six-beam vertices, bearing in

mind that in a six-beam fitting, short and long beams alternate.
5. Repeat the process for each beam vertice, until the ball is assembled.

After assembly, divide the ball into 2 hemispheres and install the mounts on the
copter making sure that everything fits.

Using FS-A8S

550

(An example of fasteners installation)

Now, the hemispheres may be glued. The hemispheres are not to be glued to
each other, as this is required for installing the copter inside. We used the
Dichloroethane solvent for plastics as the glue, but you can use any quick-drying
adhesive polymer with the same success.

After drying, the guard is ready for installation and for the first test flight!

Using FS-A8S

551

(without fasteners yet)

Using FS-A8S

552

First flights
We have made a guard for the Clover 2 copter, which is a learning aid for
quadcopters assembly and setup and is installed on it without modification. The
guard weighs 70g more (139 grams) than the standard one, and almost does not
affect controllability and flying time.

It should also be said that excessive vibrations, if any, may be removed by more
rigid attachment to the copter.

Eventually, we've got an unusual guard for the copter that is lightweight and has
an interesting design and opens new horizons for flying in the locations where
flying copters was dangerous before.

Using FS-A8S

553

Face recognition system

Introduction
Recently, face recognition systems have been getting a wider use, the application
scope of this technology is really expansive: from regular selfie drones to police
drones. Everywhere it is being integrated into various devices. The recognition
process itself is really fascinating, and that's what inspired me to create a project
associated with it. The purpose of my internship project was to create a simple
open source system for face recognition with a Clover quadcopter. The program
takes images from the quadcopter's camera and processes it on a PC. Therefore,
all other instructions are executed on a PC.

Development
The first task was finding a recognition algorithm. As a solution to the problem, a
ready API for Python was chosen. This API combines several advantages:
recognition speed and accuracy, and ease of use.

Installation
First, you have to install all the necessary libraries:

pip install face_recognition
pip install opencv-python

Then download the script from the repository:

git clone https://github.com/mmkuznecov/face_recognition_from_clever.git

Code explanation
Enable libraries:

import face_recognition
import cv2
import os
import urllib.request
import numpy as np

This part of the code is intended for Python 3. In Python 2.7, enable urllib2
instead of urllib:

import urllib2

https://github.com/ageitgey/face_recognition

Using FS-A8S

554

Create a list of encodings for images and a list of names:

faces_images=[]
for i in os.listdir('faces/'):
 faces_images.append(face_recognition.load_image_file('faces/'+i))
known_face_encodings=[]
for i in faces_images:
 known_face_encodings.append(face_recognition.face_encodings(i)[0])
known_face_names=[]url
for i in os.listdir('faces/'):
 i=i.split('.')[0]
 known_face_names.append(i)

Addition: all images are stored in folder faces in format name.jpg

Initialize some variables:

face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

Using FS-A8S

555

Get the image from the server, and convert it to format cv2:

For Python 2.7:

Further explanation of the code is available at GitHub of the used API in the
comments to the next script

Using
It is enough to connect to "Clover" via Wi-Fi and check whether the video stream
from the camera is working correctly.

Then just run the script:

python recog.py

And the output:

req = urllib.request.urlopen('http://192.168.11.1:8080/snapshot?topic=/main_cam
arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
frame = cv2.imdecode(arr, -1)

req = urllib2.urlopen('http://192.168.11.1:8080/snapshot?topic=/main_camera/ima
arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
frame = cv2.imdecode(arr, -1)

https://github.com/ageitgey/face_recognition/blob/master/examples/facerec_from_webcam_faster.py

Using FS-A8S

556

Possible difficulties
When the script is started, the following error may pop up:

 known_face_encodings.append(face_recognition.face_encodings(i)[0])
IndexError: list index out of range

In this case, try to edit the images in folder faces, perhaps the program cannot
recognize faces in the images due to poor quality.

Using the calibration
To improve recognition accuracy, you can use camera calibration. The calibration
module may be installed using a special package. Instructions for installation and
use are available in the camera calibration article. The program that uses the
calibration package is named recog_undist.py

Code brief explanation:

Enable installed package:

import clever_cam_calibration.clevercamcalib as ccc

Add the following lines:

height_or, width_or, depth_or = frame.shape

This way, you will obtain information about image size, where height_or is the
height of the initial image in pixels, and width_or is the width of the initial image.
Then correct distortions in the initial image, and get its parameters:

https://github.com/tinderad/clever_cam_calibration

Using FS-A8S

557

In this case, we pass argument ccc.CLEVER_FISHEYE_CAM_640, since the
resolution of the image in this example, is 640x480; you can also use
ccc.CLEVER_FISHEYE_CAM_320 for resolution 320x240, otherwise you will
have to send the path to the .yaml calibration file as the second argument.

Finally, return the image to its initial size:

This was, you can significantly improve recognition accuracy since the image
processed will not be so badly distorted.

if height_or==240 and width_or==320:
 frame=ccc.get_undistorted_image(frame,ccc.CLEVER_FISHEYE_CAM_320)
elif height_or==480 and width_or==640:
 frame=ccc.get_undistorted_image(frame,ccc.CLEVER_FISHEYE_CAM_640)
else:
 frame=ccc.get_undistorted_image(frame,input("Input your path to the .yaml f
height_unz, width_unz, depth_unz = frame.shape

frame=cv2.resize(frame,(0,0), fx=(width_or/width_unz),fy=(height_or/height_unz)

Using FS-A8S

558

An Android transmitter
As early as in the frosty January 2018, all owners of Apple mobile devices got a
nice Wi-Fi piloting app for iOS. And now, a year later, such an application is
available for another operating system. The latest version may be downloaded
here.

Introduction
In this article, I will tell you how to write your own or modify an existing transmitter
for Android yourself. We will use the popular language Kotlin, and we will use
Android Studio for an IDE. For those who never used it, I recommend reading the
following materials. The entire application code can be found here. If you want to
immediately get an app to further tuning, run the following command:

git clone https://github.com/Tennessium/android

However, to make you fully understand the application, I will tell you about each
stage of the project, as if you were building it from scratch.

Wrapper
Let's start with the simplest thing — the appearance of our application. At GitHub,
you can find HTML, CSS and JavaScript files, which make up the web page to be
used for controlling the copter. To have this page displayed in our application, do
the following:

1. Create folder assets in the main folder of the app named app

2. Add to it all files from here

If you reached this stage, you already have the web page you want,
congratulations! Now we have to display it somehow in the app. To do this, in
class activity in method onCreate, write the following code:

main_web.loadUrl("file:///android_asset/index.html")

Where main_web is the ID of your WebView, which is in the xml file of the activity
selected by you.

Unfortunately, the quadcopter transmitter requires the entire screen of the device,
while the interface elements of the system interfere with full-fledged use of the
program. For this purpose, at the beginning of method onCreate, call the
following function:

https://vk.com/away.php?to=https%3A%2F%2Fplay.google.com%2Fstore%2Fapps%2Fdetails%3Fid%3Dexpress.copter.cleverrc&cc_key=
https://www.google.com/search?ei=xQxDXMH0C8OOmgW4mYigDQ&q=%D0%A7%D1%82%D0%BE+%D0%B4%D0%B5%D0%BB%D0%B0%D1%82%D1%8C+%D0%B5%D1%81%D0%BB%D0%B8+%D1%8F+%D0%BD%D0%B5+%D1%83%D0%BC%D0%B5%D1%8E+%D0%BF%D0%B8%D1%81%D0%B0%D1%82%D1%8C+%D0%BF%D0%BE%D0%B4+%D0%B0%D0%BD%D0%B4%D1%80%D0%BE%D0%B8%D0%B4%3F&oq=%D0%A7%D1%82%D0%BE+%D0%B4%D0%B5%D0%BB%D0%B0%D1%82%D1%8C+%D0%B5%D1%81%D0%BB%D0%B8+%D1%8F+%D0%BD%D0%B5+%D1%83%D0%BC%D0%B5%D1%8E+%D0%BF%D0%B8%D1%81%D0%B0%D1%82%D1%8C+%D0%BF%D0%BE%D0%B4+%D0%B0%D0%BD%D0%B4%D1%80%D0%BE%D0%B8%D0%B4%3F&gs_l=psy-ab.3...4413.17423..17726...9.0..2.442.4577.45j5j1j0j1....2..0....1..gws-wiz.....6..0i71j35i39j0i131j0j0i67j0i131i67j0i22i30j33i22i29i30j33i21j33i160.0bZz-WGxoHY
https://github.com/Tennessium/android
https://github.com/CopterExpress/clover/tree/master/apps/android/app/src/main/assets
https://github.com/CopterExpress/clover/tree/master/apps/android/app/src/main/assets

Using FS-A8S

559

This feature allows getting rid of the system interface elements. Let's go ahead.

This is how the transmitter looks at this stage:

If you run your application, you will see that the sticks are not functioning. This is
due to the fact that JavaScript is disabled in our page. To enable it, write the
following code:

 main_web.settings.apply {
 domStorageEnabled = true
 javaScriptEnabled = true
 loadWithOverviewMode = true
 useWideViewPort = true
 setSupportZoom(false)
}

This piece of code allows the page to use JavaScript and at the same time
prepares for the next stage - logics.

Receiving data from the web page
To let your phone receive data from the HTML page, create a class for interacting
with the web interface

private fun fullScreenCall() {
 window.setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN, WindowManager.L
 if (Build.VERSION.SDK_INT < 19) {
 val v = this.window.decorView
 v.systemUiVisibility = View.GONE
 } else {
 //for higher API versions.
 val decorView = window.decorView
 val uiOptions = View.SYSTEM_UI_FLAG_HIDE_NAVIGATION or View.SYSTEM_UI_F
 decorView.systemUiVisibility = uiOptions
 }
}

Using FS-A8S

560

class WebAppInterface(c: Context) {
 @JavascriptInterface
 public fun postMessage(message: String) {
 val data = JSONObject(message)
 send("255.255.255.255", 35602, pack(
 data.getInt("x").toShort(),
 data.getInt("y").toShort(),
 data.getInt("z").toShort(),
 data.getInt("r").toShort()))
 }
}

This class will receive messages from the web page sent by the postMessage
where argument message is the message from the page.

Now we have to link classes WebAppInterface and MainActivity. For this you
have to add just one line to method onCreate:

main_web.addJavascriptInterface(WebAppInterface(this), "appInterface")

Sending data to the copter
Important! For working in Internet in the Android platform, add the following line
to tag manifest in file AndroidManifest.xml:

<uses-permission android:name="android.permission.INTERNET"/>

It will grant your application access to the Internet, and the ability to send data via
Wi-Fi. And you will now learn how to do that. Let's go ahead.

You have probably noticed function send in class WebAppInterface. It is this
function that sends data to the copter. Let's declare it outside classes:

This function sends data via the user datagram protocol to the copter. The
program sends bytes, so it would be a good idea to declare the function for
creating an array of bytes from four variables:

fun send(host: String, port: Int, data: ByteArray, senderPort: Int = 0): Boolea
 var ret = false
 var socket: DatagramSocket? = null
 try {
 socket = DatagramSocket(senderPort)
 val address = InetAddress.getByName(host)
 val packet = DatagramPacket(data, data.size, address, port)
 socket.send(packet)
 ret = true
 } catch (e: Exception) {
 e.printStackTrace()
 } finally {
 socket?.close()
 }
 return ret
}

https://www.google.com/search?q=udp+%D0%BF%D1%80%D0%BE%D1%82%D0%BE%D0%BA%D0%BE%D0%BB&oq=udp+&aqs=chrome.0.69i59j69i57j35i39j0l3.1434j1j7&sourceid=chrome&ie=UTF-8

Using FS-A8S

561

fun pack(x: Short, y: Short, z: Short, r: Short): ByteArray {
 val pump_on_buf: ByteBuffer = ByteBuffer.allocate(8)
 pump_on_buf.putShort(r)
 pump_on_buf.putShort(z)
 pump_on_buf.putShort(y)
 pump_on_buf.putShort(x)
 return pump_on_buf.array().reversedArray()
}

Summary
Now your app has the full functionality of its analog for iOS. You can customize it
as you wish. For any questions about the app, contact us in Telegram
@Tenessinum.

Using FS-A8S

562

3D-scanning drone

The project was created in collaboration with Texel inc. that develops 3D-
scanners for scanning people.

Our fellows from Texel provided a module consisting of a Raspberry Pi and a
PrimeSense 3D-sensor.

We provided a Clover 3 drone that's capable of autonomous flight and wrote a
flight program.

To make it all work we conducted many tests, made changes in the drone's
design and tuned the drone properly.

Video

Using FS-A8S

563

Team
The project was made by:

Timofei Kondratiev [Copter Express] - drone assembly, writing and debugging
the program, conducting tests;
Anton Maltsev [Copter Express] - modeling of the protection of the propellers;
Andrei Poskonin [Texel] - modifying the Texel's software to work on
Raspberry Pi.

Using FS-A8S

564

Human Pose Estimation drone
control

Introduction
Human pose estimation is one of the computer vision applications in order to
estimate all the joints and the different poses of the human body through a special
camera and a special hardware or process the images from a regular camera by
machine learning and deep learning techniques. This project is about controlling
the drone through the poses of a person in front of regular camera without
needing to an external hardware or hard build dependencies on your computer.

Demo

Using FS-A8S

565

In the demo video, we were using Ubuntu 18.04 and clever4 drone.

Using FS-A8S

566

Development
We used posenet from tensorflow.js as our human pose estimation module
because it is easier to use, build, fast and compatible with different
environments(Hardware and OS). You can find the work of posenet for this project
here. Websockets were used as communication protocol between the browser
and a running server on the drone.

Architecture
The image below is a visualization of our architecture for the project.

This figure is made from here

Dependencies
Before you test it you need to install on your laptop:

Install Nodejs from here. For Ubuntu installation

https://github.com/hany606/tfjs-posenet
https://www.draw.io/
https://nodejs.org/en/download/
https://tecadmin.net/install-latest-nodejs-npm-on-ubuntu/

Using FS-A8S

567

Install Yarn package manager from here. Usual problem while installing and
using yarn with Ubuntu.
Have an experience in manual control on the drone in case of any weird
behavior happen.
Worked before with COEX drones, if this is your first time to work with COEX
drones check this.

and you are ready to build and use the required codes.

Setup & installation

In your main laptop

(It has been tested until now only on Ubuntu 18.04)

Clone the repo of posenet in your computer or download it if you are using
Windows without GitHub

git clone https://github.com/hany606/tfjs-posenet.git

Do the steps of running and setup as it is described in the README here

In the Raspberry Pi of the drone (Main controller)

Access the Raspberry Pi
Switch to Client mode and ensure that the network has internet connection.

Notice: I have already made a bash script based on that tutorial, it is in COEX-
Internship19/helpers/ called .to_client.bash To run it:

chmod +x .to_client.bash
./.to_client <NAME_OF_NETWORK> <PASSWORD>

Install the tornado library to make a WebSocket server

sudo pip install tornado

Clone the main repo on the Raspberry Pi of the drone

git clone https://github.com/hany606/COEX-Internship19.git

Go to the project directory

cd COEX-Internship19/projects/Human_pose_estimation_drone_control/

Run the server to test that everything is correct and run the posenet, you
should see a lot of data is printed in the terminal (if you are running the
human pose estimation code on your main computer, just refresh the page in
the browser after running the below command in Raspberry Pi)

https://yarnpkg.com/lang/en/docs/install/
https://github.com/yarnpkg/yarn/issues/3189
https://clover.coex.tech/en/
https://github.com/hany606/tfjs-posenet/tree/master/posenet

Using FS-A8S

568

python websocket_server_test.py

Close the server using Ctrl+C
To run the main file

python main_drone.py

How to use it
Run the server first from the Raspberry Pi from the correct directory

python main_drone.py

Run Human pose estimation module on your laptop with WebSocket by

yarn websocket

Or refresh the page if you already run it.

You should see the instructions on the screen of the terminal of the
Raspberry Pi right now.
Firstly, you should be visible for the camera and it is better to have a clear
background without many details.
Secondly, you should do initial pose as it is described in the images below.
You can perform any pose and try to keep it until your drone finish doing this
move that is corresponding to the pose.
After you do the pose return to the initial pose in order to give the drone the
command to listen to another pose.
If you want to stop the program, land the drone and don't return to the initial
pose and press Ctrl+C to stop the drone.

Poses

Using FS-A8S

569

Animation is created by this

Notes
Websockets are used to communicate between the page on the browser that
runs posenet and the drone.
As the model of posenet is already pre-trained and using tensorflow.js. So, it
is quite fast and can run on different computers without any problems thanks
to yarn, parcel and tensorflow.js, and we have configured the code of posenet
to the minimal configuration to not require a lot of computation power.
This project has been built in 1 week of working, it took a lot of time trying to
make openpose and google colab working but unfortunately I had many
errors and one I decided to move to posenet everything was pretty easy.
If you have any comments about the codes to try to improve it, I will be happy
if you can contact me through telegram: @hany606 or email:
h.hamed.elanwar@gmail.com or do pull requests.
If you have implemented any of the applications below, or do some
improvements, we will be very happy for that.

Future application
Drone wars: Control the drone during the drones battle using human poses. It
requires high speed interaction and more precise control.
Control a drone that draw graffiti using human poses and draw in real-time.
Playing with balls like ping pong game with the drones. It may require 3D
Human Pose estimation Algorithms.
Control two drones by your arms and do some task together.

Acknowledgments

https://justsketchme.web.app/
https://web.facebook.com/COEXDrones/photos/pcb.1129309377266616/1129308437266710/?type=3&theater

Using FS-A8S

570

This project was part of an internship in COEX in July 2019. if you found any
bugs or problems, you can contact me through telegram: @hany606 or
email: h.hamed.elanwar@gmail.com.
The above applications were thought by me and my internship supervisor
Timofey.

References
Human pose estimation guide
Clover drones tutorials
Posenet GitHub repo
Posenet meduim article
Tensorflow.js demos
Posenet overview

https://blog.nanonets.com/human-pose-estimation-2d-guide/
https://clover.coex.tech/en/
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://www.tensorflow.org/js/demos
https://www.tensorflow.org/lite/models/pose_estimation/overview

Using FS-A8S

571

Robocross-2019
On July, 2019, for the fourth time in a row, the team Copter Express won the
annual tests of unmanned vehicles "Robocross". Tests are held at the GAZ test
site near Nizhny Novgorod.

The main objective of the tests in the UAV category was to localize and destroy
the target - the red balloon - autonomously.

Video

Implementation
The team used an F450 frame based quadcopter and Clover software platform.
The final source code is available on GitHub.

 robocross2019 ROS package is divided into two parts: red_dead_detection ROS
nodelet recognizes the red ball, ball.py implements high-level flight logic.

red_dead_detection
The red_dead_detection nodelet recognizes the red ball on the image from the
forward looking quadcopter camera (/front_camera/image_raw and
 /front_camera/camera_info topics). The simplest method of filtering the image by
color is applied. Then the nodelet calculates the geometric center of the detected
segments, and performs camera distortion compensation (cv::undistortPoints).

http://russianrobotics.ru/activities/robokross-2019/
https://github.com/CopterExpress/clover
https://github.com/CopterExpress/robocross2019/

Using FS-A8S

572

Using the known focal lengths of the camera (from camera_info), the nodelet
calculates the vector directed towards the target. The resulting vector is published
to the topic /red_dead_detection/direction ; its coordinate system (frame_id is
associated with the front camera front_camera_optical).

balloon.py
To fly towards the ball, the direction vector red_dead_detection/direction is used,
which is set as a setpoint for the velocity of the drone. The yaw angle is also set
towards the ball. The target is considered destroyed when the total area of red
pixels is less than the threshold for a certain amount of camera frames.

Using FS-A8S

573

Camera calibration
Computer vision is becoming more and more widespread. Often, computer vision
algorithms are not precise and obtain distorted images from the camera, which is
especially true for fisheye cameras.

The image is "rounded" closer to the edge.

Any computer vision algorithm will perceive the picture incorrectly. To remove
such distortion, the camera that receives the image is to be calibrated in
accordance with its own peculiarities.

Script installation
First, you have to install the necessary libraries:

pip install numpy
pip install opencv-python
pip install glob
pip install pyyaml
pip install urllib.request

Then download the script from the repository:

git clone https://github.com/tinderad/clever_cam_calibration.git

Go to the downloaded folder and install the script:

Using FS-A8S

574

cd clever_cam_calibration
sudo python setup.py build
sudo python setup.py install

If you are using Windows, download the archive from the repository, unzip it and
install:

cd path\to\archive\clever_cam_calibration\
python setup.py build
python setup.py install

path\to\archive – path to unpacked archive.

Preparing for calibration
You will have to prepare a calibration target. It looks like a chessboard. The file is
available for downloading here. Glue a printed target to any solid surface. Count
the number of intersections on the board lengthwise and widthwise, measure the
size of a cell (mm).

Turn on Clover and connect to its Wi-Fi.

Navigate to 192.168.11.1:8080 and check whether the computer receives
images from the image_raw topic.

Calibration
Run script calibrate_cam:

Windows:

https://github.com/tinderad/clever_cam_calibration/archive/master.zip
https://www.oreilly.com/library/view/learning-opencv-3/9781491937983/assets/lcv3_ac01.png

Using FS-A8S

575

>path\to\python\Scripts\calibrate_cam.exe

path\to\Python – path to the Python folder

Linux:

>calibrate_cam

Specify board parameters:

>calibrate_cam
Chessboard width: # Intersections widthwise
Chessboard height: # Intersections heightwise
Square size: # Length of cell edge (mm)
Saving mode (YES - on): # Save mode

Save mode: if enabled, all received pictures will be saved in the current
folder.

The script will start running:

Calibration started!
Commands:
help, catch (key: Enter), delete, restart, stop, finish

To calibrate the camera, make at least 25 photos of the chessboard at various
angles.

To make a photo, enter command catch.

>catch

The program will inform you about the calibration status.

Using FS-A8S

576

...
Chessboard not found, now 0 (25 required)
> # Enter

Image added, now 1 (25 required)

Instead of entering command each time, you can just press Enter (enter a
blank line).

After you have made a sufficient number of images, enter command finish.

...
>finish
Calibration successful!

Calibration by the existing images

If you already have images, you can calibrate the camera by them with the help of
script calibrate_cam_ex.

>calibrate_cam_ex

Specify target characteristics and the path to the folder with images:

>calibrate_cam_ex
Chessboard width: # Intersections widthwise
Chessboard height: # Intersections heightwise
Square size: # Length of cell edge (mm)
Path: # Path to the folder with images

Apart from that, this script works similarly to calibrate_cam.

The program will process all received pictures, and create file camera_info.yaml
in the current folder. Using this file, you can equalize distortions in the images
obtained from this camera.

If you change the resolution of the received image, you will have to re-
calibrate the camera.

Correcting distortions
Function get_undistorted_image(cv2_image, camera_info) is responsible for
obtaining a corrected image:

cv2_image: An image encoded into a cv2 array.
camera_info: The path to the calibration file.¬

The function returns a cv2 array, into which the corrected image is coded.

Using FS-A8S

577

If you are using a fisheye camera provided with Clover, for processing
images with resolution 320x240 or 640x480, you can use the existing
calibration settings. To do this, pass parameters or
clever_cam_calibration.clevercamcalib.CLEVER_FISHEYE_CAM_640
as argument camera_info, respectively.

Examples of operation
Source images:

Corrected images:

Using FS-A8S

578

An example of usage
Processing image stream from the camera.

This program receives images from the camera on Clover and displays them on
the screen in corrected for, using the existing calibration file.

Using FS-A8S

579

The usage for ArUco
To apply the calibration parameters to the ArUco navigation system, move the
calibration .yaml file to Raspberry Pi of Clover, and initialize it.

Don't forget to connect to Wi-Fi of Clover.

The SFTP protocol is used for transferring the file. This example, WinSCP
program is used.

Connect to Raspberry Pi via SFTP:

Password:

Press “Enter”. Go to /home/pi/catkin_ws/src/clever/clever/camera_info/, and
copy the calibration .yaml file to this folder:

import clevercamcalib.clevercamcalib as ccc
import cv2
import urllib.request
import numpy as np
while True:
 req = urllib.request.urlopen('http://192.168.11.1:8080/snapshot?topic=/main
 arr = np.asarray(bytearray(req.read()), dtype=np.uint8)
 image = cv2.imdecode(arr, -1)
 undistorted_img = ccc.get_undistorted_image(image, ccc.CLEVER_FISHEYE_CAM_6
 cv2.imshow("undistort", undistorted_img)
 cv2.waitKey(33)
cv2.destroyAllWindows()

Using FS-A8S

580

Now we have to select this file in ArUco configuration. Connection via SSH is
used for this purpose. This example, PuTTY program is used.

Connect to Raspberry Pi via SSH:

Log in with username pi and password raspberry, go to directory
/home/pi/catkin_ws/src/clever/clever/launch and start editing configuration
main_camera.launch:

Using FS-A8S

581

In line camera node, change parameter camera_info to camera_info.yaml:

Don't forget to change camera resolution.

Using FS-A8S

582

Recognition of crop types in mass
agricultural production

Introduction
Modern agriculture in many countries is becoming one of the shining examples of
the rapid and successful introduction of new technologies. Unmanned aerial
vehicles are capable of performing a wide range of tasks, among which
monitoring of agricultural land has now become a common tool for increasing the
efficiency of agriculture. The goal of my project is to write a code for recognizing
crop types in mass agricultural production. In the future, from the recognition
results, you can design a map of sown areas.

Monitoring
In agriculture, monitoring is necessary to obtain information on the state of land
and crops. Based on the monitoring results, farmers or specialists can understand
whether crops are sprouting normally, whether there is a threat from weeds and/or
insects - pests, what is the degree of moisture in individual areas or entire areas,
etc.

Explanation of the code
Import libraries:

import rospy
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
import numpy as np

Create some variables:

rospy.init_node('computer_vision_sample')

bridge = CvBridge()

color = 'undefined'
shape = 'undefined'
culture = ""

To implement computer vision algorithms, it is recommended to use the OpenCV
library preinstalled on the Clover image. Create a subscriber for the topic with the
image from the main camera for processing using OpenCV:

Using FS-A8S

583

def image_colback_color(data):
 global color, shape

 cv_image = bridge.imgmsg_to_cv2(data, 'bgr8') # OpenCV image
 img_hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV) #[118:119,158:159]

 #detected color
 #print(img_hsv[0][0])

Each culture has its unique shade (wheat is golden, buckwheat is light brown).

We describe color ranges for certain crops:

Using FS-A8S

584

The script will take up to 100% CPU capacity. To slow down the script artificially,
you can use throttling of frames from the camera, for example, at 5 Hz
(main_camera.launch):

The topic for the subscriber, in this case, should be changed for
 main_camera/image_raw_throttled .

print (culture)
while not rospy.is_shutdown():
 print("color: {}".format(color))
 print("shape: {}".format(shape))
 rospy.sleep(0.2)

This program will recognize the culture by its shade. We can use more color
ranges to improve the accuracy of the recognition so the drone can recognize
more crops.

Examples of color ranges for other colors:

#wheat
yellow_orange_low = (38, 110, 150)
yellow_orange_high= (52, 110, 150)

#buckwheat
brown_low = (23, 50, 50)
brown_high= (37, 50, 50)

yellow_orange_mask = cv2.inRange(img_hsv, yellow_orange_low, yellow_orange_high
brown_mask = cv2.inRange(img_hsv, brown_low, brown_high)

if yellow_orange_mask[119][159] == 255:
 shape = shape_recog(yellow_orange_mask)

elif brown_mask[119][159] == 255:
 shape = shape_recog(brown_mask)

else:
 shape = 'undefined'
 color = 'undefined'

if shape == 'brown':
 culture = "greshiha"
if shape == 'yellow_orange':
 culture = "pshenitsa"

image_sub = rospy.Subscriber('main_camera/image_raw', Image, image_colback_colo

<node pkg="topic_tools" name="cam_throttle" type="throttle" args="messages main

Using FS-A8S

585

red_low1 = (0, 110, 150)
red_high1 = (7, 255, 255)

red_low2 = (172, 110, 150)
red_high2 = (180, 255, 255)

red_orange_low = (8, 110, 150)
red_orange_high = (22, 110, 150)

orange_low = (23, 110, 150)
orange_high = (37, 110, 150)

yellow_orange_low = (38, 110, 150)
yellow_orange_high = (52, 110, 150)

yellow_low = (53, 150, 150)
yellow_high = (67, 255, 255)

yellow_green_low = (68, 150, 150)
yellow_green_high = (82, 255, 255)

green_low = (83, 150, 150)
green_high = (97, 255, 255)

blue_green_low = (98, 150, 150)
blue_green_high = (113, 255, 255)

blue_low = (114, 150, 150)
blue_high = (127, 255, 255)

blue_violet_low = (128, 150, 150)
blue_violet_high = (142, 255, 255)

violet_low = (143, 150, 150)
violet_high = (157, 255, 255)

red_violet_low = (158, 150, 150)
red_violet_hugh = (171, 255, 255)

Note that there are two ranges for red because red is at the edges of the HSV
color space.

Using FS-A8S

586

Drones to fight Corona
CopterHack-2021

team: Drones to fight Corona

Team
Daria Miklashevskaya d.miklashevskaya@innopolis.ru
Yuriy Sukhorukov y.suhorukov@innopolis.ru

Innopolis University, B17-DS-II, B17-RO-I

Introduction
The world faces the worst pandemic of XXI century, which affects lives and well-
being of millions of citizens. To slow down the spread of the disease and give the
healthcare system to react, people are obliged to wear masks, however, people
sometimes ignore those rules, which puts lives of others under the threat.

There are laws in place to enforce mask wearing, but there is just not enough
cops to monitor the situation in every mall, bus station etc and fine the law-
breakers. We want to contribute to the solution of this problem, but instead of
punishing people, we want to provide them with mask with our super-friendly and
cute drone.

Custom airframe
Since we do not have the Clover drone, we will use an airframe built and
designed by us. Our system is designed to be platform-independent, so it can be
installed on almost everything, even VTOL aircrafts.

The main idea is to use truss structure, because it works well against twisting and
warping, besides, it can be assembled out of carbon tubes relatively easily.

mailto:d.miklashevskaya@innopolis.ru
mailto:y.suhorukov@innopolis.ru

Using FS-A8S

587

The main advantage of such a system is that it distributes the impact between
beams and effectively dissipates it. Engine mounts, however, are not impact-proof
because they are specifically designed to break but save much more expensive
and not-readily-available engines. This is why mounts are quickly-replaceable
(only 3 screws) and made of cheap PLA plastic.

The space inside the central rhombus is occupied by the on-board equipment:
batteries, PX4 flight controller, Jetson Xavier NX / AGX, power electronics,
sensory equipment.

As it is shown on this picture, computers can be mounted on the bottom and
completely protected by legs and the truss structure from any collision damage.
Jetson AGX is marked with arrow. Almost invisible, isn't it?

All sensory equipment, like cameras, rangefinder, etc can be easily mounted on
the beams with special bracket connectors. This type of connection provides
flexibility because you can fine-tune camera angle or position before tightening
screws and fixing it firmly in place, which is especially relevant for tracker-
cameras.

We used one T-265 camera for visual odometry and one D-435 depth camera for
both video input for neural net and for map-building (collision avoidance). T-265
suffers from "odometry drift" especially when engines are beat-up, which

Using FS-A8S

588

eventually happens after a number of crashes, so we have incorporated dampers
to solve this problem.

Finally, the drone with all equipment installed looks like this

Software
Thus far we discussed things which are specific to our custom airframe. Things
we are going to discuss next are applicable for Clover drone as well. Our software
is containerized so it can be launched on every platform that supports Docker, be
it Windows machine, Linux machine, Jetson or Raspberry Pi.

Using FS-A8S

589

We have split our drone software into two modules:

Pipeline, which manages communication with ROS.
Neural net module, which talks with the pipeline via sockets.

The reason for this is simple - ROS supports only Python 2, and I do not feel like
I'm building ROS with Python 3 because it is a bit troublesome. Our neural net, on
the other hand, uses Pytorch which is Python 3 only, so the only way to run them
both is to use inter-process communication of some sort.

Apart from compatibility issue, such an arrangement allows us to run inference
module anywhere we want, e.g. on more powerful desktop PC or even
somewhere in the cloud (google collab? Why not!).

This means that we can make our drone lighter by excluding heavy on-board
computer and replacing it with something light like Raspberry Pi. Pipeline image is
made as lightweight as possible, so it should be runnable even on really weak
computers.

More detailed instructions on how to build and run our software are available in
our Gitlab repo.

Neural net
We use 3rd version of YoLo neural network, pretrained on custom dataset for 50
epochs.

It runs 10-15 FPS on Jetson NX, which is enough for our task

Exploration and collision avoidance
To make our drone useful and to operate it safely, we should somehow make the
drone aware of its current position and surrounding objects. There are two ways
we can solve this problem

Use pre-built map as a ground truth and then calculate the position with e.g.
Particle Filter
Build map on-the-fly, while avoiding collisions and moving towards the goal

The second approach is more robust, because it does not rely on any external
map, which can be erroneous or just missing and hence we opted for it.

We use a path planner, described in . In this paper Receding Horizon Next-Best-
View Planner is presented, which uses Rapidly-exploring Random trees to
navigate and explore the environment. It yields the following results, here is the
occupancy map and the corresponding tunnel as it is seen by human being:

1

2

https://gitlab.com/k0t1k/thegreateye/-/tree/master

Using FS-A8S

590

The algorithm is lightweight, so even the small computer like Latte Panda can run
it with high enough frequency, and since it is CPU-bound, it will not compete for
resources with the neural net, which is almost entirely GPU-bound.

Mask release
Detecting people without masks is cool, no doubt.

But we want not only to detect them but to give him a mask as well, so, we have
built this system that can give a mask to person.

Using FS-A8S

591

This device looks like a regular firearm mag, and functions exactly in the same
way. Masks can be loaded into containers made out of 20ml syringe barrels.

This device needs further engineering because current iterations are too fragile
and unreliable, probably the best solution will be to use linear actuator and push
the "casing" out of the action, like in actual firearm.

3D models
All the 3D models used to build this cute drone can be found in our gdrive.

Final thoughts
We all hope that Corona crisis will soon be over, and when it will be finally over,
our drones will be still useful. We can deliver some small objects, like cosmetics
or shaving blades to the customers' door, the task that currently is done by a
human courier. This service (with shaving blades), when a guy comes and brings
a new set of shaving blades every week is very popular in US and UK, so why not
try to automate it.

https://drive.google.com/drive/folders/1tR5ePX24_i9tpllOPMcnZIUfse89c1YI?usp=sharing

Using FS-A8S

592

This is an MVP, so some improvements are to be done. For example, payload
refill and battery swaps are done manually for now, but this task should be
automated. Actually, some work is already done in this direction:

Drone lands on a landing platform with special hooks which will connect to four
metallic contacts (highlighted) and charge the battery. In future we want to change
battery, not just charge it, but the mechanism is very complex and requires
making custom batteries and battery mounts, also, it constraints placement of
cameras, payload and so on.

For the general-purpose delivery drone, the working principle and hardware will
remain the same, but software (neural net detector) will need an update.

Stay safe folks!

References
. Massagué Respall, Victor & Devitt, Dmitry & Fedorenko, Roman. (2020).

Unmanned Aerial Vehicle Path Planning for Exploration Mapping. 1-6.
10.1109/NIR50484.2020.9290232. ↩

. Nisarg Pethani & Harshal Vora. (2020)
https://github.com/NisargPethani/Face-Mask-Detection-using-YOLO-v3 ↩

1

2

https://github.com/NisargPethani/Face-Mask-Detection-using-YOLO-v3

Using FS-A8S

593

D-drone Copter Hack 2021 by AT
Makers
CopterHack-2021, team AT Makers.

Intro
People strive to teach artificial intelligence everything they can do themselves. We
are taught to draw from childhood. And why not teach the drone to draw? At the
moment, copters and graffiti are gaining popularity. So we decided to combine
them.

Models and assembly

Using FS-A8S

594

To complete the project you need to have in stock:

spray paint
clover 4 kit
servo MG90S
3D printer

Using FS-A8S

595

spray can extension straw
velcro
4 long screws and nuts M4 or M3
2-4 short self-tapping screws M4 or M3.

Download and 3D-print details:

holder
screw
rack_holder_with_nut
rack x2
servo_holder.

Spray holder. The spray holder is attached to the deck with 4 screws and nuts.
To fasten the can to the holder, we used a tape with velcro. With 4 nuts and
screws, we fix the drone's upper deck with spray holder.

Holder weight: 90g.

If the diameter of the can is less than the diameter of the holder, we use the part
in the form of an arc, with the size of the difference between them. This helps us
to fix the spray can firmly.

Pressing mechanism. To push the valve, we will use a screw drive with a fixed
nut. A bar with holes will be attached to the servo, which will include the racks
attached to the nut. This helps the servo to move only on one axis, up and down.
We also modeled the cap for the spray can button, since the surface of the nozzle
is uneven.

https://github.com/PerizatKurmanbaeva/D-drone/tree/master/details

Using FS-A8S

596

Before launching

Configuring the servo scripts

Before starting the copter, you need to download servo.py and move it to RPi. You
can simply copy and paste using the clipboard. Or copy it using the scp
command. For instance:

scp servo.py pi@192.168.11.1:/home/pi

https://github.com/PerizatKurmanbaeva/D-drone/blob/master/examples/servo.py

Using FS-A8S

597

Then run the following commands remotely on the Raspberry Pi:

sudo pigpiod
python servo.py

Configuring the Web interface

Download this repository in .zip format. Copy to RPi and unpack using the
following commands:

scp visual_ddrone-master.zip pi@192.168.11.1:/home/pi
cd catkin_ws/src/clover/clover/www
unzip /home/pi/visual_ddrone-master.zip .
mv visual_ddrone-master ddrone

Now to open the web interface, click on the link http://192.168.11.1/clover/drone.

Web interface
Our drone is launched via website. The web interface allows you to draw and
encode what you draw in G-code. The coordinate data will be transmitted for
further processing and execution by the copter.

We pick the web interface to control the copter because it is easier for the user.

https://github.com/PerizatKurmanbaeva/visual_ddrone
http://192.168.11.1/clover/drone
https://perizatkurmanbaeva.github.io/visual_ddrone

Using FS-A8S

598

Flights

Special Thanks
Project was created with financial support of International Ala-Too University.

Using FS-A8S

599

3D-printed Generative Design Frame

ADDI Copterhack 2021 Project

Contact

Website, Mail, Telegram: @danielhonies.

Introduction
At the Aachen Drone Development Initiative we aim to develop a new frame for
the clover drone by implementing the latest state of the art CAD-Design
techniques as well as advanced manufacturing methods.

Three main goals have to be taken into consideration when designing a new
frame:

Decreasing the Weight
Improving Durability
Increasing Safety

https://www.aachen-drone.de/
mailto:daniel.honies@rwth-aachen.de

Using FS-A8S

600

For the first stage of the design we will focus on the first two points.

Software
For designing our drone we use Autodesk Fusion 360. It comes with a generative
design feature. This makes it possible to create rule-driven designs. First the
preserved geometry is defined. Usually this includes all kinds of mounts like motor
mounts, flight controller mounts, RPi mount etc. Then obstacle geometry is
defined. This for example includes space for the propellers and the airflow. After
that forces are defined. Then Fusion 360 will automatically calculate optimal
connections for the aforementioned preserved geometry.

Prototypes

Prototype 1

After printing the first version of the frame we discovered the following problems:

Bad Filament: Layer Adhesion of the Filament was quite bad resulting in a
not very rigid model
Support Structure: The support structure for the frame is very complex and
the parameters used in the slicer resulted in it being unable to be removed
without destroying the model
Arm Strength: Some parts of the arms to the motor mounts were very thin,
resulting in them breaking easily and removing the support structure resulted
in breaking them

To conquer those problems we made several changes. We increased the minimal
thickness for the generated structures and generated a new model. We changed
the settings in the slicer so that the support structure could be removed easier as
well as changed the infill structure. Finally we changed the filament and increased
the printing temperature. Further we concluded that printing with a water
dissolvable support structure would be optimal, however as of right now we don’t
have access to a printer capable of that.

Using FS-A8S

601

Prototype 2

This prototype took 48 hours of printing and used 277 grams of filament including
100 grams for the support. Installation of the components is very easy as no other
tools than a screwdriver are needed. This prototype was the first to take flight in
January 2021. Please see this video.

Prototype 3

This prototype is even more optimised than the last one. Excluding support the
model only weighs 141 grams. For this version we have also developed a prop
guard, which weighs around 80 grams. Weight of the drone with the prop guard
and a 2200mah battery is under 700 grams. Flight testing in the following videos
shows the effectiveness of the prop guard. We also did some drop tests with this
model and figured that a drop height of around 1 meter can be sustained. We plan
to optimise this while sacrificing a bit of weight in February.

Videos:

Flight Test
Prop Guard Test

https://youtu.be/M4f8_JmJADM
https://youtu.be/uJjnMzz1Nm0
https://youtu.be/UdnqIuXV2UI

Using FS-A8S

602

Final Prototype

In this final prototype we have changed the preserved geometry on the bottom to
form a rectangle for added stability. We have also changed some of the forces on
the points we observed breakings in our previous tests. We have also updated the
prop guard to make it more stable and increased the area around the screws, so it
would break harder. The frame without the prop guard weighs only 150g making it
significantly lighter than the default frame.

Benefits

We see the following benefits with our design over the traditional clover frame
design:

Tools needed for production: only a 3D printer is needed compared to laser
cutter, cnc and 3D printer
Single material reduces supply chain complexity and reduces cost. Filament
is cheap and only around 400 grams are needed for the full frame and the
prop guard. This should reduce the cost to under $5.
The unibody design saves weight and much less screws are needed. This
also reduces costs.

Using FS-A8S

603

Easier adaptability: Anybody can change the frame to their desire and include
their own adapters and mounts. It can be printed by any standard sized 3D
printer. (Ender-3, Prusa etc.)
Manual labor reduced: Printing is easy to automate, packing is significantly
reduced as less screws need to be counted etc.

Conclusion

In our work for this years competition we presented a new way to design and
manufacture drone frames. By utilizing state of the art methods of CAD programs
we are able to optimize the weight and shape of drone frames in a way that for
the first time it is feasible to 3D print them. In total we have printed around 10
frames and presented a few of them above and the challenges we faced with
them. This iterative process to frame design was only possible due to the fact that
only a 3D printer is needed and the filament being very cheap. Due to the open
source nature of the project and this report giving a short introduction into
generative design, we hope that many people feel inspired to check out this new
method of designing and producing drone frames.

CAD Files

You are welcome to test out these frame yourself and you are free to modify them
in any way, shape or form. We would appreciate feedback and encourage
submitting your modifications in a pull request so other people can benefit from
this open source development. The CAD Files can be found on our GitHub Page.

https://github.com/Aachen-Drone-Development-Initiative/generative-clover-frame

Using FS-A8S

604

Retail Drone - CopterHack 2021 article
CopterHack-2021, team: Bennie and the Jetson TX2.

My project is a drone that can scan a store shelf and determine if the
representation of a specific brand is adequate for what the vendor paid for. In
most retail stores, a brand will pay for space on a shelf in order to be more eye
catching to the customer and eventually get more sales, which is why bigger
brands are generally seen more. However because of either employee ineptitude
or general non-compliance up to 15% of a brand’s space on a shelf that it paid for
can be lost, which can lose the brand upwards of 5% loss in overall sales.

Several apps have been released to fight this such as Clobotics, however they all
require an employee to go around manually and take snapshots. I wanted to build
a system where a shop owner could simply place the drone at a starting point,
click a button and have their inventory done automatically within minutes.

Since all inventory in a shop is usually on the shelves and I wanted to not have
the drone rely on GPS I fitted the Clover’s Pi camera in front for object detection
and navigation. Rather than using map-based navigation since one can’t expect a
shop owner to place markers perfectly on the ground, opencv2 has a built in
ArUco marker detection method that identifies and draws a bounding box around
all markers in frame. So once the drone takes off from the starting position, it
identifies where the marker is in frame and uses the Clover’s navigate() method
to center the marker and its area to place the Clover approximately 1 metre from
it.

What’s expected is that the shop owner places markers at every different brand’s
section in ascending order down an aisle. The drone has a specific marker ID it’s
looking for and once it’s centered itself on the nearest marker, it determines its ID
and moves either left or right depending if the identified marker is lower or higher
than the target. This way the Clover moves down an aisle stopping at each
marker until it reaches the target.

In order to identify the number of items of each brand, I’ve trained a TensorFlow
model and stored its metadata in a caffemodel file for the Python script to pull
from. Every time the drone stops at a marker, a method is run that applies a
convolutional neural net to the frame and determines how much of a specific item
(right now the model is trained to recognize soda cans but can easily be taught
other items) it at said marker (remember that each marker is to be placed at each
brand’s individual section). In the video below, you’ll see a POV video of my drone
with two markers placed on the wall in my garage. What happens is that the drone
takes off, centers itself on the first marker and as its ID is 140 and the target ID is
138, it’s driven left to the second marker which has a soda can hung next to it. It
then identifies the soda can, conveying the number of cans of that brand to the
shop owner before centering itself on the marker and landing due to it reaching
the target marker.

Using FS-A8S

605

My main goal with this project was accessibility. I wanted to make a drone that
could navigate purely based on its camera with computer vision tools that aren’t
exclusive to MAVLink or ROS drones. By fitting the camera to the front not only
would a user be able to get more functionality out if it than simply map-based
navigation but would be able to make more useful applications such as shop
keeping or security through facial recognition. With alterations to the left, right,
front, back, up and down commands this script can be applied to any hackable
drone and requires little to no prior experience to use.

Check out the video below to see it in action:

Contact info
Email - jadenbh12@gmail.com
Telegram - @jadenbh12

mailto:jadenbh12@gmail.com
tg://resolve?domain=jadenbh12

Using FS-A8S

606

DroMap: The Indoor Mapping Drone
CopterHack-2021, team: DroMap. E-mail: officialdromap@gmail.com.

Team:

Shouq AlQahtani
Ameena AlMansouri
Noof AlMarri

Abstract
In the modern era, the world is witnessing a magnificent development in the field
of architecture and interior design. Due to architectural development, the current
measuring tools such as metal tapes and leaser meters became insufficient for
assisting both architects and interior designers in taking the measurements for
buildings and facilities. Because the accuracy of obtained readings depends on
the professionalism of the users and the nature of these tools is unidirectional, the
measurement taking process becomes less efficient in terms of time and labor.
Since drones have played an essential role in revolutionizing the world of science
and automation due to their use in a huge number of daily life applications, an
introduction of indoor drones in the field of mapping and architecture is
indispensable. Hence, the DroMap project proposes an autonomous indoor drone
that can navigate autonomously and create a map of the indoor environment
along the way. For the aforementioned purpose, a LiDAR sensor is used to collect
data of the indoor place which is sent to a host computer. Afterward, simultaneous
localization and mapping algorithm utilizes these data to pave the way for creating
a 2-dimensional map. This autonomous indoor mapping drone system is not
prone to inefficiency and human errors like in manual mapping and has the
potential to take indoor mapping to the next level in the near future.

Motivation

Problem Statement

Architects lives are constantly in danger due to the nature of their work as they
are supposed to enter buildings without knowing their structure, these dangers
could potentially threaten their lives and can lead to many issues. According to ,
there are 1.2 deaths per 100,000 architects and that job is ranked 19th among the
most dangerous jobs in the United States. One example of a fatal accident is the
accident of Bruno Travalja which happened in 2016, this architect fell from the
48th floor of a building while taking measurements. In addition to being
dangerous, the process of mapping an indoor environment is time-consuming,
especially in transferring the raw measurements into a 2-dimensional map .
Therefore, the need for robot assistance in mapping and measurement taking

1

2

mailto:officialdromap@gmail.com

Using FS-A8S

607

processes reaches the peak. Autonomous indoor mapping using drones or robots
is considered an important tool where the drone can reach different places which
are inaccessible to humans due to space constraints or security reasons .

The use of robots has increased dramatically within the past decade due to their
enormous potential in both civil and architectural applications. Specifically, in
designing and building robots for mapping enclosed buildings. Even though most
of the works were implemented on unmanned ground vehicles (UGV), the current
experimental use of unmanned Ground vehicles for indoor mapping suffers from a
few shortcomings. Particularly, most implementations suffer from low performance
regarding time consumption and have difficulty accessing narrow places. Since
UGVs have limitations in terms of time consumption and navigation rigidity, in the
DroMap project we decided to use drones as a replacement for UGVs to map
indoor sites. This is because drones are unique in their ability to traverse any 3D
interior space without any restrictive concerns regarding space architecture.
Additionally, since these vehicles are not required to remain on the ground, aerial
vehicles can fully explore the extent of the indoor space, regardless of their
interiors. Furthermore, unmanned aerial vehicles can access difficult to reach
areas.

A questionnaire was conducted for this project to study the need for an indoor
mapping drone which involved 72 architects and interior designers. The following
question was asked to have an estimate of the time taken by the targeted
category for taking the measurements of a large building. According to the survey
results, 61% of the sample consume more than 60 minutes to measure a large
building. This shows that the measurement taking process is time-consuming.

Technical Challenges

The positioning system calculates the odometry data based on the laser
scanner poses. This might misestimate the drone’s position with respect to
the surroundings.
The LiDAR readings could be infinite if the distance between the LiDAR and
the surrounding walls exceeds the LiDAR range.
The communication between the Raspberry Pi and the PC relies heavily on
Wi-Fi. Therefore, any loss in the Wi-Fi signal would terminate the
communication between the drone and PC.

Non-technical Challenges

3

Using FS-A8S

608

The indoor environment could be full of obstacles, which impedes path
planning process.
The mirrors, windows, and glass doors may affect the accuracy of the map as
they are not detected correctly by the laser pulses.

Project Significance

Measuring a room or a full building along with transforming the collected data to a
full map is time-consuming and requires massive effort. DroMap helps architects
and interior designers to measure and generate a fully constructed 2D map with
less time and effort. To help us understand the problem better, we conducted a
survey to assess the need for an indoor mapping drone. This project will provide a
great advantage for architects and interior designers as it would save time and
effort in the map construction process. In addition, it will assure great cooperation
from both the computer and architecture fields.

Generally, the process of mapping an indoor environment is composed of two
phases; the first phase is the measurement taking phase and the second phase is
the map drawing phase. However, the project introduces another way to create a
map that is faster and requires less effort; as the measurements of the
surroundings will be taken by the system once it is activated and processed by
Simultaneous Localization and Mapping algorithms (SLAM) for building and
updating maps as well as positions of an unknown environment in robotics in real-
time. According to the survey, 94% of the sample agreed that it would be useful to
have a robotic based measuring tool. Therefore, the proposed solution will
successfully assist architects and interior designers in mapping indoor areas.

Based on the conducted survey, accuracy is the most important characteristic to
be satisfied with the project. The below figure demonstrates that 48 of the sample
sizes care about having high accuracy. Moreover, the second most important
feature to be reached is having a short scanning time, which highlights the
importance of the project.

Using FS-A8S

609

Furthermore, since the project employs multiple concepts related to indoor robots
and indoor data processing, it can be extended to assist other fields in Qatar
rather than the architecture field only. For example, this project could be a great
step towards training drones to handle different tasks related to search and
rescue such as entering buildings on fire or finding a missing person in indoor
places. This will serve to develop more technologies to process the indoor data in
various environments and conditions, also to develop drones that are capable to
operate in indoor areas with different functionalities.

Proposed solution
DroMap project consists mainly of two major components: the drone and the
drone add-on. The drone is responsible for the physical movement of the entire
system. The drone add-ons consist of necessary sensors for mapping, path
planning, and mounting equipment such as Raspberry Pi 4, RPLiDAR A1M8,
Sonar, and range finder. The Raspberry Pi collects the data from the sensors.
While the data is being collected by the Raspberry Pi, the Hector SLAM will
process these data in real-time to formulate 2-dimensional maps. After that, the
map will be sent wirelessly to a remote PC and visualized through RVIZ software
tool.

Hardware/software to be used

Hardware selection

COEX Clover Drone kit

Clover is a complete STEM educational programmable drone kit which includes
unassembled quadcopter with four propellers and open-source software.

Limitless possibilities of a fully programmable drone (Open Source).
Drone can operate stably without GPS.
The Clover platform exploits the ROS framework.
Made especially for Indoor flights.

Using FS-A8S

610

Slamtec RPLiDAR A1M8

LiDAR is low cost 2D 360° 12m scanning sensor.

Omnidirectional Laser Range Scanner 360°.
Compatible with ROS.
Very high sampling Rate 8k times, Considered as one of the Highest in the
Current LiDAR industry.
Ideal for indoor Navigation and Localization using UAVS.

Raspberry Pi 4 Model B

Raspberry Pi is a single-board computer which is used as a companion computer.

Low energy consumption.
Connect the drone over Wi-Fi.
Responsible for flight autonomy.
Access and issue commands to peripherals.

VL53L1X RangeFinder Sensor

Laser Ranging Sensor Module Rangefinder. One of the smallest time-of-flight 940
nm laser VCSEL. Measuring absolute range up to 4 meters.

The Range Finder Optical Ranging sensor is an integrated sensor with
embedded infrared, eye-safe laser, advanced filters and high-speed photon
detection arrays.
Range finder Supports 400cm sensing range, suitable for many applications.

Software selection

Robot Operating System (ROS)

A framework which runs on Linux operating system, and will be used as a
firmware to control and monitor the system.

COEX Virtual Machine

A Linux operating system that has a pre-installed ROS along with some
necessary dependencies and packages in addition to a pre-configured Gazebo
environment.

Gazebo

The simulation tool that will be used to test and try different mapping and
automation approaches.

Visual Studio Code

A text editor to write python scripts to program the drone.

RVIZ

A visualization tool to visualize the LiDAR readings.

QGroundControl

Using FS-A8S

611

QGroundControl supports full flight control and mission planning for any MAVLink
enabled drone.

Implementation
The implementation divided into two parts. The first part is to work on the
simulation software, and the second part is to work on the physical hardware
components. The simulation software helped us to have an estimation of how the
system will work in the physical world. Through the simulation software, we were
able to identify some implementation challenges and finding solutions for them. In
addition, the simulation software gave us the opportunity to process the sensors
data and test the sensors before testing them physically, which speeded up the
process of working on the physical components and testing them. Moreover, it
was found that the results obtained from the simulated components and the
physical components were close to each other. In this section, we demonstrate
the progress that happened in both the physical and the virtual worlds.

The Simulation Software

The Mapping algorithm

The Hector SLAM algorithm was selected in this project due to its high efficiency
in mapping indoor environments, its ability to work with drones efficiently, and its
facility to be integrated with the selected LiDAR sensor. Moreover, it consumes
less power in handling some cases where the indoor environment is dynamic, and
the obstacles are moving . Hector SLAM is an algorithm that is used widely in
mapping unknown indoor environments. The algorithm is LiDAR-based, and it
uses the Gaussian Newton equation to construct accurate maps from the laser
scanner data . Moreover, this algorithm does not use any odometry data to
estimate the robot’s position with respect to its surroundings. Instead, the
algorithm utilizes the difference in the laser scanner locations to calculate the
odometry . This feature qualifies the Hector SLAM algorithm to work optimally
with the unmanned aerial vehicles given that in most of the cases, the odometry
data is calculated from processing the wheels motion and that is not the case with
UAVs. In addition, the algorithm provides an accurate estimation of the robot’s
position with respect to its surroundings.

The Exploration Algorithm

The method used in this project to explore the indoor sites is selected to be the
wall following algorithm due to its effectiveness and simplicity. The implementation
of that algorithm can be summarized into three main functions which are:
 left_side() , move_forward() , and take_stop_action() which are represented
in a while loop as following:

4

5

6

Using FS-A8S

612

The implementation of the wall following algorithm highly depends on the
LiDAR used in the simulator which is Hokuyo laser scanner with 360
rotation angle and 720 readings per 32ms. However, the physical LiDAR
used is RPLiDAR A1M8 which provides 360 readings per rotation.

while(1):
 left_side()
 move_forward()
 take_stop_action()

left_side()

This function uses the LiDAR readings that are pointing exactly to the west of the
drone, it measures how far the drone is from the left wall, then adjust the drone to
it such that the drone is approximately 0.7 m away from the left wall. The reason
of using 0.7 meters is because the drone has higher error that expected.
Therefore, a while loop is used to ensure that the drone is far enough from the
wall.

move_forward()

This function was implemented to safely move the drone forward without hitting a
wall, or without skipping an outer corner. The logic behind this algorithm is that it
uses the concept of the right angle, and multiple readings which correspond to
different angles to measure the safe distances. The bellow flow chat
demonstrates the logic of that algorithm in details.

Using FS-A8S

613

When the function ends, the drone will either stop after an inner corner, or an
outer corner.

take_stop_action()

This function handles two different situations:

The first situation is that the drone may stop when it faces an inner corner,
this can be detected by measuring the distance from the front wall, then
compare the current distance of the left LiDAR reading with the previously
recorded one, if the comparison showed that there is a small difference
between these two readings, then this means that the drone must rotate to
the right and continue its path.
The second situation is that the drone may stop when it detects an outer
corner, the logic is exactly like the first situation except, that the drone must
be away from the front wall (with distance greater than 1.5 meter). In addition,
the difference between the current left LiDAR reading, and the previously

Using FS-A8S

614

recorded reading must be greater than 0.5 m. If this is the case, then the
drone has stopped because of an outer corner. Therefore, the drone must
rotate to the left and continue its path.

The following video illustrates a ROS Simulation test on Wall Following Algorithm:

Testing

The above figure demonstrates the drone exploring a maze autonomously while
constructing a 2D map in real-time. The terminal shows the safe distances to
move forward, these distancing where calculated using the aforementioned
flowchart.

The following figures show a constructed 2D map of different environments.

Using FS-A8S

615

The following video demonstrates an autonomous maze exploration with Hector
SLAM responsible for constructing a 2D map:

Using FS-A8S

616

The physical hardware

This section illustrates the progress done regarding the hardware components.
The first step done was to establish a Wi-Fi communication between the
Raspberry Pi and the remote PC. The second step was to install the hector SLAM
and robot Localization packages in the Raspberry Pi to visualize the maps
remotely.

Initial Setup

The drone is assembled and configured correctly to accomplish the autonomous
mapping mission. The RPliDAR A1M8 and all other necessary sensors are
mounted on the drone as shown in the figure bellow.

To set up the drone ready for mapping, the raspberry pi image created by COEX
was installed on the micro-SD card. COEX Raspberry Pi image, COEX pixracer
image and COEX virtual machine were selected as they contain all the necessary
tools and packages to work efficiently with clover platform. The installed platform
is based on Raspbian operating system and ROS. After flashing the image on the
SD, the next step is to connect clover to Wi-Fi.

Using FS-A8S

617

Network Setup

The drone produces a map of an unknown indoor environment by sending data
received from the sensors to a remote pc. The transmission takes place over a
wireless channel to get a map in real-time. One of the essentials for DroMap is to
setup the connection between the drone and the remote PC. In DroMap Project
ROS network must satisfy the listed below requirements:

1. There must be a full bidirectional communication between all the nodes.
2. Every component in the network must advertise its name.
3. In ROS network one of the components must be declared as the ROS

master. Specifically, the ROS master is the drone (Clover-6064).
4. All ROS packages needed in the project, must use the ROS master.

All these requirements are fulfilled in our design.

Required packages

After the installation of ROS, the drone was ready to install RPLidar ROS package
and Hector SLAM. These packages are installed by cloning them in a catkin
workspace src folder. Then build them by running catkin build. The following
commands were entered in the terminal show the process of installing RPLidar
package and hector SLAM in raspberry pi. The rplidar_ros package is
responsible for retrieving the RPLidar data and hector SLAM package is
responsible for building maps. rplidar_ros and hector_slam packages ware
installed from GitHub.

Testing

The testing phase was divided into several stages in order to test the sensor and
the SLAM algorithm in several closed places. This makes it possible to identify
obstacles and risks that may face us in the future.

We did several of the following elementary tests:

Firstly, we flew the drone to obtain maps using Hector Mapping with the
remote control.
Secondly, we have moved to the automation stage of implementing the codes
applied in the simulator.
Finally, From here we did some tests, for example, the drone flies to the wall,
and then lands after getting a wall reading. And tests are still going on for a
fully automatic flight.

References
. “The 20 deadliest jobs in America, ranked,” CBS News.

https://www.cbsnews.com/pictures/the-20-deadliest-jobs-in-america-
ranked/4/. ↩

1

2

https://www.cbsnews.com/pictures/the-20-deadliest-jobs-in-america-ranked/4/

Using FS-A8S

618

. A. Kovalchenko, “How To Carry Out a Survey and Site Measure,” 2012.
https://essenziale-hd.com/2012/10/28/how-to-carry-out-a-survey-and-site-
measure/. ↩

. D. Hähnel, W. Burgard, and S. Thurn, “Learning compact 3D models of
indoor and outdoor environments with a mobile robot,” Rob. Auton. Syst.,
vol. 44, no. 1, pp. 15–27, 2003, doi: 10.1016/S0921-8890(03)00007-1. ↩

. M. Eliwa, A. Adham, I. Sami, and M. Eldeeb, “A critical comparison
between Fast and Hector SLAM algorithms,” / REST J. Emerg. trends
Model. Manuf., vol. 3, no. 2, pp. 44–49, 2017, [Online]. Available:
www.restpublisher.com/journals/jemm. ↩

. J. M. Santos, D. Portugal, and R. P. Rocha, “An evaluation of 2D SLAM
techniques available in Robot Operating System,” 2013 IEEE Int. Symp.
Safety, Secur. Rescue Robot. SSRR 2013, 2013, doi:
10.1109/SSRR.2013.6719348. ↩

. H. Gossett, “Building an Autonomous Indoor Drone System,” University
of Mississippi, 2018. ↩

2

3

4

5

6

https://essenziale-hd.com/2012/10/28/how-to-carry-out-a-survey-and-site-measure/

Using FS-A8S

619

Seed spreading quadcopter
CopterHack-2021, team MINIONS.

Have you ever wondered what a world without trees would look like? Close your
eyes, and try to imagine a desolate Earth. There'd be no more paper, and
everyone would have to resort to technological use - that is, if anyone was left.
Trees are a crucial factor to our existence not only because they produce paper,
lumber and chewing gum, but because they serve an important role in the carbon
cycle.

Ever since the industrial revolution between 1760 and 1840, the world has been in
a never-ending carbon chaos. Trees and Plankton are our only saviours in terms
of handling this problem, and we can only control one of them, trees.

We need to save trees by protecting them from the destructive human activities
like clearance of forests, deforestation for urbanization, etc. Trees are the lungs
for the earth. It is an important part of nature’s ecosystem. They balance the soil
composition and also act as the barrier for wind and storm. Thus, they provide
various uses to the ecosystem. For these reasons, it’s imperative that we save
trees.

Since there are a lot of dangerous and difficult-to-reach landsides for humans to
plant, the most viable alternative is to use drones for plantation in those regions.

Seed-firing drones will, as the name suggests, fire seeds into fertile soil to allow
millions of trees to grow back after being cut down for industrial use. If the rate of
planting exceeds the rate of cutting, eventually we will restore the trees we once
felled.

Our Aim
We will make drones able to hold seeds onboard and drop them in an area which
we drove in a special application. We can control the density of the seeds and the
height of the drop. We also thought about protection of the seeds from insects,
animals and dehydration. We choose the earth ball technique invented by

Using FS-A8S

620

Masanobu Fukuoka, aka Fukuoka Technique. This earth ball contains all needed
elements to grow, plant seeds and earth for protection. When we drop it on the
ground, the earth ball will hold seeds until it gets the needed amount of water and
seeds will begin to grow.

YouTube video link - https://www.youtube.com/embed/Nz1w59v451U.

We achieved to do small seeding missions but we faced some problem about
autonomous flying with GPS.

We coated our battery to protect it from cold weather, seeding missions need to
start in winter since apple seeds need to stay in a cold place for some time to
break dormancy.

Seed capsules
How to assemble seeding mechanism to clover 4.2 drone
How to control the seeding mechanism
Programming

Files
Link for the all files used in this project:
https://github.com/Sahinysf/TreeSeedQuad.

Seed capsules

Fukuoka technique

In southern Japan, the Japanese farmer and philosopher Masanobu Fukuoka
invented a seed ball planting technique. The method is regarded as a natural
farming technique that requires no machines, no chemicals and very little
weeding. By the use of seed balls, land is cultivated without any soil preparation.

https://www.youtube.com/embed/Nz1w59v451U
https://github.com/Sahinysf/TreeSeedQuad

Using FS-A8S

621

Advantages of seed balls:

It is simple and easier to make seed balls without machines.
Easier for reforestation and plantation in difficult terrains.
Contribute to protect soil, environment and livelihood.
It is an organic technique and doesn’t use any chemicals.
It is a low-cost method compared to traditional afforestation/reforestation
techniques.
It requires low maintenance.

Which Seeds can be used?

Any seed which grows in your area (In our it’s apple seed).

Size and weight of the seed capsule: size and Weight of seed capsules are very
important for this project. After some experiments we decided that best size is 16-
18mm diameter and maximum weight is 10 g.

Required materials for making seed balls:

1. 1 bucket of clay
2. 1 bucket of organic dark soil / compost
3. 1 bucket of water (amount of water may vary depending on the soil type)
4. ¼ bucket of seeds

Steps for making seed balls:

1. Collect same quantity of both clay and organic soil. For example, if you use
one bucket of clay, then you should mix with one bucket of organic soil.

Using FS-A8S

622

2. Make sure that clay and organic soil fine particles.
3. The clay and organic soil texture should be wet but not sticky
4. Take a bit of mixture and roll it into balls. Test the ball by throwing it on a flat

surface. If the ball doesn’t break easily, it means it has got good bonding.
5. Seed balls must be a perfectly round shape otherwise they will be stuck while

throwing with the quadcopter
6. Insert seeds (1 to 2 seeds per seed ball for permanent trees such as

mahogany, sandalwood, orange, moringa…) (± 5 seeds per seed ball for
vegetables, flowers, grasses, clovers…)

7. Dry the seed balls for one to two days in a shaded area, if properly dry, the
seed balls will be protected from external predators such as chickens, birds,
rats…

Second technique - paper seed capsules.

This method was influenced by a Korean newspaper that contained seed that
could be planted outside after reading it. Paper seed capsules :

Required materials:

1. Any kind of paper
2. Water
3. Blender
4. Seeds

Steps for making paper seed balls:

1. Shred all of your paper.
2. Put paper in blender and add water, after 2 minutes blend.
3. Squeeze all the water out with paper.
4. Add seeds and give round shape.
5. Let it dry overnight.

Using FS-A8S

623

Advantages of paper balls:

Easy to find materials.
Environmentally friendly.

REREFENCES

https://web.archive.org/web/20090115211020/http://www.rmaf.org.ph/Awardees/Bi
ography/BiographyFukuokaMas.htm
http://www.guerrillagardening.org/ggseedbombs.html

How to assemble seeding mechanism to
Clover 4.2 drone

How to assemble seeding mechanism

After finishing step 4, at section Installing guard of Clover 4.2 assembly.

1. Install the Lower Tank Holders to top Deck mount and fix with the M3x8
screws.

2. Install Nylon rack(40 mm) to 4 sides of the Deck mount.

https://web.archive.org/web/20090115211020/http://www.rmaf.org.ph/Awardees/Biography/BiographyFukuokaMas.htm
http://www.guerrillagardening.org/ggseedbombs.html

Using FS-A8S

624

3. Install the Grab deck and fix with the M3x8 screws.

4. Install the Upper Tank Holders to top Grab mount and fix with the M3x8
screws.

5. Connect the Tanks carefully to Tank Holders.

Using FS-A8S

625

6. Connect SG90 servo motors to Tank using zip tie.

Final view of seeding drone:

GPS Module

We installed the GPS Module to the top using 2 Nylon rack (40 mm):

Using FS-A8S

626

We coated the battery to protect it from the cold weather:

Using FS-A8S

627

How to control the seeding mechanism
Electronic part of seed dropping mechanism consists of:

Raspberry Pi 4 B of COEX Clover 4.
2 Micro Servo Motors SG90.
PDB (Power Distribution Board) of COEX Clover 4.

Servo motor’s signal pins are connected to Raspberry Pi’s Hardware PWM pins
32 and 33, and power is taken from Power Distribution Board (5 V).

Using FS-A8S

628

Explanation of code for controlling servo motors

Servo motors are controlled using a PWM (Pulse-Width Modulation) signal from
Raspberry Pi. PWM controls the amount of time when signal is HIGH or LOW
within a certain period of time. Duty Cycle – percentage of time when signal is
HIGH.

In a table below it's presented the duty cycle of Servo Motor SG90 of each angle
of servo motor. In order to use duty cycle in code we need to convert time to
percentage by dividing duty cycle time by the total PWM period.

What we get is:

-90° rotation angle or 2ms Duty Cycle => 1/20*100% = 5% Duty Cycle.
90° rotation angle or 2ms Duty Cycle => 2/20*100% = 10% Duty Cycle.
0° rotation angle or 1,5ms Duty Cycle => 1,5/20*100% = 7,5% Duty Cycle.

We’ll do this by using the RPi.GPIO library and writing Python code on the
Raspberry Pi.

First, import the RPi.GPIO library and the sleep function:

import RPi.GPIO as GPIO
from time import sleep

Then, setup the GPIO mode as BOARD:

Using FS-A8S

629

servo = 33
GPIO.setmode(GPIO.BOARD)
GPIO.setup(servo, GPIO.OUT)

Next, create a variable for the servo, PWM. Then, send a 50 Hz PWM signal on
that GPIO pin using the GPIO.PWM function. Start the signal at 0:

pwm=GPIO.PWM(servo, 50)
pwm.start(0)

Use the ChangeDutyCycle function to write duty cycle percentages to the servo
motor.

pwm.ChangeDutyCycle(5) # left -90 deg position
sleep(1)
pwm.ChangeDutyCycle(7.5) # neutral position
sleep(1)
pwm.ChangeDutyCycle(10) # right +90 deg position
sleep(1)

Programming
In order for the mission to be achievable in the best way and within our reach, we
were required to utilize the threading in Python.

Simple mission code:

Using FS-A8S

630

import threading
import time
import rospy
from clover import srv
from std_srvs.srv import Trigger
import RPi.GPIO as GPIO

rospy.init_node('flight')

get_telemetry = rospy.ServiceProxy('get_telemetry', srv.GetTelemetry)
navigate = rospy.ServiceProxy('navigate', srv.Navigate)
navigate_global = rospy.ServiceProxy('navigate_global', srv.NavigateGlobal)
set_position = rospy.ServiceProxy('set_position', srv.SetPosition)
set_velocity = rospy.ServiceProxy('set_velocity', srv.SetVelocity)
set_attitude = rospy.ServiceProxy('set_attitude', srv.SetAttitude)
set_rates = rospy.ServiceProxy('set_rates', srv.SetRates)
land = rospy.ServiceProxy('land', Trigger)

servo1 = 33 # PWM pins
servo2 = 32

GPIO.setmode(GPIO.BOARD) #set pin numbering system

GPIO.setup(servo1,GPIO.OUT)
GPIO.setup(servo2,GPIO.OUT)

pwm1 = GPIO.PWM(servo1,50) #create PWM instance with frequency
pwm2 = GPIO.PWM(servo2,50)

pwm1.start(0) #start PWM of required Duty Cycle
pwm2.start(0)

def servo_drop(seconds): #function to drop seed capsules from 2 tanks
 print("Dropping")

 i = 1 #variable to choose which tank
 for num in range(seconds/2):
 if(i == 1): #first tank
 pwm1.ChangeDutyCycle(10) # release one seed capsule
 time.sleep(0.5)
 pwm1.ChangeDutyCycle(5) # push then drop the capsule
 time.sleep(0.5)
 i = 2 #changing the variable for to use the secon

 elif(i == 2): #first tank
 pwm2.ChangeDutyCycle(10) # release one seed capsule
 time.sleep(0.5)
 pwm2.ChangeDutyCycle(5) # push then drop the capsule
 time.sleep(0.5)
 i = 1 #changing the variable for to use the first

 print(num)
 time.sleep(2)

if name == "main":
 # Take off and drone 10m above the ground
 navigate(x=0, y=0, z=10, frame_id='body', auto_arm=True)

 # rospy waits for 10 seconds to take off
 rospy.sleep(10)

 # Dropping starts simultaneously with flying forwards 5 meters
 d = threading.Thread(target=servo_drop, args=(18,)) # 18 is the sum of all

Using FS-A8S

631

References

https://www.nationalgeographic.com/environment/article/deforestation
http://www.fao.org/fileadmin/templates/rap/files/NRE/Forestry_Group/Landsli
de_PolicyBrief.pdf
https://earthenginepartners.appspot.com/

Developed by Team MINIONS
Special thanks to International Ala-Too University for funding the Clover 4 kits.

 d.start()

 navigate(x=5, y=0, z=0, frame_id='body')

 #rospy waits for 8 seconds to fly forward
 rospy.sleep(8)

 # Fly right 1 m
 navigate(x=0, y=1, z=0, frame_id='body')

 #rospy waits for 2 seconds to fly right
 rospy.sleep(2)

 # Fly backward 5 m
 navigate(x=-5, y=0, z=0, frame_id='body')

 #rospy waits for 8 seconds to fly backward
 rospy.sleep(8)

 # Perform landing
 land()

pwm1.stop()
pwm2.stop()
GPIO.cleanup()

https://www.nationalgeographic.com/environment/article/deforestation
http://www.fao.org/fileadmin/templates/rap/files/NRE/Forestry_Group/Landslide_PolicyBrief.pdf
https://earthenginepartners.appspot.com/

Using FS-A8S

632

Designing a drone and a path
planning algorithm
CopterHack-2021, team: Blue Jay Eindhoven.

Introduction
We at Blue Jay Eindhoven are a student team of the Eindhoven University of
Technology. We are doing research on drones that fly indoors, are interactive,
autonomous, safe and helpful.

We are participating in the Copterhack 2021, because COEX has a lot of
knowledge about making a drone. With the help of COEX's expertise, we would
be able to develop our drone further. However, the project with which we started
the Copterhack turned out to be not that successful. We therefore also didn't get
to have a more in depth discussion with COEX. The fact that we are not an open
source company, added to this. We couldn't just share everything and when that
one project failed, we first had to look at what we are going to share next.
Because of these events, the collaboration part hasn't really lifted off.

The information that you are going to find in this project summary is therefore not
that specific developed for the Clover drone. It can however certainly be used to
customize the Clover drone. In addition, it can also give a first overview for
beginners on how to design a path planning algorithm and how the design
process of a drone looks like.

We are still planning on doing some research on the Clover drone itself. This will
mainly be on the stability and movability of the our drone. But we are going to
start with investigating it on the Clover drone. So there might be a nice further
collaboration on this. In addition, we are also trying to implement the codes for the
Clover drone onto our drones. By doing this, we will also be able to provide some
feedback on it and develop it further.

Now we will give you a short summary of our results on the Path Planning
Algorithm and the Hardware Research that we have done. For the full reports, you
can go to this google drive:
https://drive.google.com/drive/folders/1vfWjWD5Qx38mDta0PvMFvAv6jC-
mxF7U?usp=sharing.

Path Planning Algorithm
It is investigated what the most optimal path planning algorithm is for the Clover
drone. This is done since it was noted that this is not done in the base version of
the drone. The path planning algorithm makes it possible that the drone flies
autonomous in a much better way than without the algorithm.

https://drive.google.com/drive/folders/1vfWjWD5Qx38mDta0PvMFvAv6jC-mxF7U?usp=sharing

Using FS-A8S

633

In the documentation, we have set up a plan to put this path planning algorithm to
work on your drone. This is a low level algorithm, so everyone should be able to
implement it. The algorithm does however need some sort of map from which it
can get information on the possible paths. So that part, you still have to implement
yourselves.

Hardware Research
The report describes the internship project carried out at Blue Jay. As we focus on
indoor drone application, we wishes to minimize the produced noise to improve
user experiences. On the other hand, we also wish to improve the flying efficiency
for benefiting flying time. As result, the project is about making the drone more
efficient with less noise emitted during the operation. For producing design to
approach the problem, design methodology has been applied. In the end the
ducted fan design has been chosen through studied theory and experimenting.
However, there are two additional requirements, an increase in amounts of
sensors and an increase in propeller numbers to increase safety. These additional
requirements result the drone has less flying time due to the increase in weight.
However, the selected design still improved the efficiency of selected propeller.

This hardware part is more of a general research that can be applied to all
drones, including the Clover drone. If a group of high school or university students
would like to do their own research on the Clover drone, they can use the
research for ideas. They can for instance perform a project in which they design
their own 3D printed ducted fans to use on the Clover drone. The research in the
report would then be a good first read on how to design such a thing and what the
performance results could be.

In addition, the kind of propellers that are used on the Clover drone can also be
adjusted. Maybe a group wants get a little smaller or larger propellers or even a
different shape. The research done can then also help as a guide to decide what
kind would be best for that specific use with respect to size and shape.

It is also useful when one wants to use the code that the Clover drone uses, but
also wants to develop their own drone. The hardware research can then be used
as a guide on how you can do this. It states all kind of factors that should be taken
into account and in what way you can do this.

Full Project Information
To see what our project at Blue Jay is all about, you can watch the following video
of our interim event: https://www.youtube.com/watch?v=E_8TTQN92pU&t=0s. We
state our user case, explain what we have achieved so far and what the plans are
for the future.

If you have questions or ideas, feel free to ask! You can contact us at
info@bluejayeindhoven.nl.

https://www.youtube.com/watch?v=E_8TTQN92pU&t=0s
mailto:info@bluejayeindhoven.nl

	Introduction
	Glossary
	Safety tips
	Assembly
	Clover 4.2 assembly
	Clover 4.2 WorldSkills
	Clover 4 assembly
	Clover 3 assembly
	Clover 2 assembly

	Configuration
	Sensor calibration
	RC setup
	Using FS-A8S

	Flight modes
	Power setup
	Failsafe configuration

	Manual flight
	Exercises

	Working with Raspberry Pi
	RPi Image
	Wi-Fi connection
	Connection to the Pixracer
	Using QGroundControl over Wi-Fi
	Remote shell
	Command line interface
	Automated self-checks
	Viewing images from cameras

	Programming
	Camera setup
	Fiducial markers (ArUco)
	Marker detection
	Map-based navigation

	Optical Flow
	Autonomous flight (OFFBOARD)
	Coordinate systems (frames)
	Code examples
	Interfacing with a laser rangefinder
	LED strip
	Working with GPIO
	Interfacing with a sonar
	Computer vision basics
	Using rviz and rqt
	Software autorun
	Using JavaScript
	Blocks programming
	Simulation
	Native setup
	VM setup
	Usage
	Setup on M1 computers

	ROS
	MAVROS

	Supplementary materials
	COEX Pix
	COEX PDB
	COEX GPS
	Using SSH keys
	Guide on autonomous flight
	Hostname
	PX4 Simulation
	Navigation using vertical ArUco-markers
	PID Setup
	Model files for parts
	ROS Melodic installation
	Camera calibration
	VPN ZeroTier Connection
	Quadcopter control with 4G communication
	Clover and Jetson Nano
	Remote control app
	Wi-Fi Configuration
	UART settings
	PX4 Parameters
	PX4 Logs and Topics
	PX4 Firmware
	MAVLink
	Multimeter usage
	RC Troubleshooting
	Flashing ESCs
	Interfacing with Arduino
	Connecting GPS
	Working with IR sensors
	FPV Setup
	FPV Setup (Clover 3)
	Magnetic grip
	Mechanical grip
	Trainer mode
	Tinning
	Types of power connectors
	Connecting 4 in 1 ESCs
	Soldering safety
	LED strip (legacy)
	Contribution Guidelines
	COEX packages repository
	Migration to v0.20
	Migration to v0.22

	Events
	CopterHack-2023
	CopterHack-2022
	CopterHack-2021
	CopterHack-2019
	CopterHack-2018
	CopterHack-2017
	Video contest
	Educational contests

	Clover-based projects
	Clover Cloud Platform
	Autonomous Racing Drone
	Motion Capture System
	Swarm in Blocks 2
	Advanced Clover 2
	Network of charging stations
	Swarm-in-blocks
	Obstacle avoidance using artificial potential fields method
	The Clover Rescue Project
	CopterCat CM4
	Autonomous valet parking drone assistance
	Autonomous Multirotor Landing System (AMLS)
	Drone show
	Innopolis Open 2020 (L22_ÆRO)
	Copter spheric guard
	Face recognition system
	Android RC app
	3D-scanning drone
	Human pose estimation drone control
	Robocross-2019
	Camera calibration (legacy)
	Recognition of crop types in agriculture
	Drones to fight Coronavirus
	D-drone Copter Hack 2021 by AT Makers
	3D-printed Generative Design Frame
	Retail Drone
	The Indoor Mapping Drone
	Seeding Drone
	Blue Jay Eindhoven

